Chemistry, asked by bhattdanish2109, 1 year ago

Calculate the uncertainty in the position of an electron .If the uncertainty in the velocity is 4.5×10 raised power 5m/s


Anonymous: ___k off

Answers

Answered by Anonymous
7
 \textsf{\underline {\Large {Heisenberg's Uncertainty Principle}}} :

 \textsf{\underline {\large {Solution}}} :

Given, Uncertainty in velocity of an electron,\mathsf{\Delta{v}} =  \mathsf{4.5\:{\times{{10}^{5}}}m{s} ^{-1}}

According to Heisenberg's Uncertainty Principle,

\boxed{\mathsf{\Delta{x\:{\times{\Delta{p} \:{\geq{\dfrac{h} {4{\pi}}}}}}}}}

Or

\boxed{\mathsf{\Delta{x\:{\times{\:m{\Delta{v} \:{\geq{\dfrac{h} {4{\pi}}}}}}}}}}

Uncertainty in position \Rightarrow{\mathsf{\Delta{x}\:{\geq{\dfrac{h}{4{\pi{m{\Delta{v}}}} }}}}}

Since, we know that,

⚫h ( Planck's Constant ) = \mathsf{6.6\:{\times{{10}^{-34}}}Js}

⚫Mass of an electron, m =  \mathsf{9.1\:{\times{{10}^{-31}}} \:kg}

Now, Putting these values,

\Rightarrow{\mathsf{\Delta{x}\:{\geq{\dfrac{h}{4{\pi{m{\Delta{v}}}} }}}}}

\Rightarrow{\mathsf{\Delta{x}\:=\:{\dfrac{6.6\:{\times{{10}^{-34}kg\:{m}^{2}\:{s}^{-1}}}}{4\:{\times{3.14\:{\times({9.1\:{\times{{10}^{-31}\:kg\:)\:{\times{(\:4.5\:{\times{{10}^{5}\:m\:{s}^{-1})}}}}<br />}}}}}}}}}}}

\Rightarrow{\boxed{\mathsf{\Delta{x}\:=\: 1. 283\:{\times{{10}^{-10}}}m}}}
Similar questions