Math, asked by ronakatulparmar9871, 6 months ago

Calculate the value of A, if: (tanA-1) (cosec3A-1)=0

Answers

Answered by vinayak4714
0

Answer:

(tanA-1) (cosec3A-1) = 0

tanA-1 =0/ cosec3A-1

tanA-1 = 0

tanA= 1

tanA= tan 45°

A = 45°

Answered by Anonymous
79

Given:

 \sf\bullet ( \tan A - 1)( \cosec 3A - 1) = 0

Find:

 \sf\bullet  \: calculate \: value \: of \: A

Solution:

Here,

 \sf ( \tan A - 1)( \cosec 3A - 1) = 0 \\  \\

 \sf Either, \tan A - 1 = 0 \: or \:  \cosec 3A - 1 = 0 \\  \\ \sf \tan A - 1 = 0 \\  \\ \sf \tan A = 1 \\  \\

 \sf  \implies \tan A = \tan {45}^{ \circ}  \\  \\  \sf \therefore A =  {45}^{ \circ} \\  \\

 \sf \implies \cosec 3A - 1 = 0 \\  \\ \implies \sf \cosec 3A = 1\\  \\ \sf \implies \cosec 3A = \cosec{90}^{ \circ}  \\  \\

 \sf 3A = {90}^{ \circ}  \\  \\ \sf A = {30}^{ \circ}

Hence, A = 45°, 30°

Similar questions