Math, asked by Vhart, 1 year ago

calculate the value of 'a' in the given figure

Attachments:

Answers

Answered by AnswerStation
5

\boxed{\boxed{\mathbf{\angle a = 149}}}

______________________________

We know that,


\mathsf{\angle P(exterior) = 62}

\mathsf{PQ = PR}

_______________________________


Now,

\mathsf{\angle P(exterior) = \angle PQR + \angle PRQ ----(1)}

[∵ Exterior Angle of a Triangle = Sum of Interior Opposite angles of the Triangle(Exterior Angle Propetry)]


Also,

\mathsf{\angle PQR = \angle PRQ ----(2)}

[∵ Since, Angles opposite to Equal sides of Triangle are Equal]

________________________________


Now, From (1), We get


\mathsf{=> \angle PRQ + \angle PRQ = 62}

\mathsf{=> 2 \angle PRQ = 62} [From (2)]

\mathsf{\angle PRQ = \frac{62}{2}}\\ \boxed{\mathsf{\angle PRQ = 31}}

________________________________


Now,


\mathsf{\angle PRQ + \angle a = 180} [∵ A ray standing on a line forms supplementary anngles]


\mathsf{=> 31 + \angle a = 180}\\\mathsf{=> \angle a = 180 - 31}\\ \\=> \boxed{\large\mathbf{\angle a = 149}}

Similar questions