Chemistry, asked by jelbiyajunior, 11 months ago

Calculate the value of Avogadro's number from the following data :
Density of NaCl = 2.165 g cm-3. Distance between Na+ and Cl- in NaCl = 281 pm.​

Answers

Answered by MajorLazer017
7

Answer :

  • Avogadro's number = \rm{6.09\times{}10^{23}\:mol^{-1}}

Step-by-step explanation :

Given that,

  • Density, ρ = \rm{2.165\:g\:cm^{-3}}
  • Edge length of unit cell = 562 (2 × 281) pm.

Also,

  • A unit cell of NaCl contains 4 NaCl units, ∴ Z = 4.
  • Molar mass of NaCl, M = 23 + 35.5 = 58.5 g/mol.

\hrulefill

We know, \rm{\rho=\dfrac{Z\times{}M}{a^3\times{}N_0}}

\bold{OR}

\rm{N_0=\dfrac{Z\times{}M}{a^3\times{}N_0}}

Putting the given values, we get,

\implies\rm{N_0=\dfrac{4\times{}58.5\:g\:mol^{-1}}{(562\times{}10^{-10}\:cm)^3\times{}2.165\:g\:cm^{-3}}}

\implies\rm{N_0=}\bold{6.09\times{}10^{23}\:mol^{-1}}

Similar questions