Science, asked by akshaykashyap265, 1 year ago

Calculate the value of g at the depth of 1600km below the surface of earth the value of g on the surface of earth is 9.8m/sec²,R=6400km​

Answers

Answered by Anonymous
65

Answer:

\displaystyle{\text{g}_d=7.35 \ \text{m/sec}^2 }

Explanation:

Given :

Depth ( d ) = 1600 km

Value of g at surface = 9.8 m / sec

Radius ( R ) = 6400 km

We have to find value of g at depth :

We have formula :

\displaystyle{\text{g}_d=\text{g}\left(1-\dfrac{\text{d}}{\text{R}}\right)}

Putting values here :

\displaystyle{\text{g}_d=9.8\left(1-\dfrac{1600}{6400}\right)}

\displaystyle{\text{g}_d=9.8\left(1-\dfrac{1}{4}\right)}

\displaystyle{\text{g}_d=9.8\left(1-0.25\right)}

\displaystyle{\text{g}_d=9.8\left(0.75\right)}

\displaystyle{\text{g}_d=7.35 \ \text{m/sec}^2 }

Hence we get answer.

Answered by Anonymous
246

\bold{\underline{\underline{Answer:}}}

Value of g at the depth of 1600 km is 7.35 m/s²

\bold{\underline{\underline{Step\:-\:by\:-\:step\:explaination:}}}

Given :

  • Depth (d) = 1600 km
  • Value of g (on earth's surface) = 9.8 m/s²
  • Radius of earth = 6400 km

To find :

  • Value of g at the depth of 1600 km.

Solution :

Since we need to calculate the value of g below the surface of the earth, we will use the following formula.

But let's make some assumptions before we hit up the formula.

Let \bold{g_1} be the value of g at the depth of 1600 km.

\bold{\underline{\underline{Formula:}}}

\bold{\large{\sf{g_1=\:g\times{\dfrac{(R-d)}{R}}}}}

We have the values of :-

\rightarrow g = 9.8 m/s²

\rightarrowR = 6400 km

\rightarrowd = 1600 km

Block in the values in the formula,

\rightarrow \bold{g_1=\:9.8\:\times\:{\dfrac{(6400-1600)}{6400}}}

\rightarrow \bold{g_1=9.8 \times\:{\dfrac{4800}{6400}}}

\rightarrow \bold{g_1\:={\dfrac{47,040}{6400}}}

\rightarrow \bold{g_1=\:7.35}

\bold{g_1=value\:of\:at\:depth\:of\:1600\:km\:=\:7.35\:mpersec^2}

Similar questions