Science, asked by jamali13, 7 months ago

Calculate the value of ‘g’ if G = 6.67 × 10-11 Nm²/kg², mass of the Earth = 6×10²⁴ kg and radius of the

Earth = 6400 km.​

Answers

Answered by Yuseong
29

Given Question :

Calculate the value of ‘g’ if G = 6.67 × 10^-11 Nm²/kg², mass of the Earth = 6×10²⁴ kg and radius of the Earth = 6400 km.

Required Solution :

» Given-

  • G ( gravitational constant ) =  \sf { 6.67 \times {10}^{-11} N{m}^{2}}

  • m ( mass of the earth ) =  \sf {6 \times {10}^{24}kg}

  • r (Radius of the earth) = 6400 km

Converting to its SI unit-

 \rm { \leadsto 1 km = 1000m}

 \rm { \leadsto 6400 km = 64,00,000m}

 \rm { \leadsto 6400 km = 64 \times {10}^{5}m}

 \rm\red { \leadsto 6400 km = 6.4 \times {10}^{6}m}

» To find-

  • g (acceleration due to gravity)

» Calculation-

Using the formula-

  •  \boxed {\large \tt { g = \dfrac{Gm}{ {r} ^{2} } }}

Substitute the value to find the value of “g

 \tt { : \implies g = \dfrac{ 6.67 \times {10}^{-11} \times 6 \times {10}^{24} }{ {{6.4} \times ({10}^{6}) }^{2}} }

 \qquad

 \tt { : \implies g = \dfrac{ 6.67 \times {10}^{-11+24} \times 6  }{ {6.4}^{2} \times {(10) }^{6 \times 2}} }

 \qquad

 \tt { : \implies g = \dfrac{ 6.67 \times {10}^{13} \times 6  }{ 6.4 \times 6.4 \times {(10) }^{12}} }

 \qquad

 \tt { : \implies g = \dfrac{ 6.67 \times {10}^{13-12} \times 6 }{ 6.4 \times 6.4 } }

 \qquad

 \tt { : \implies g = \dfrac{ 667 \times 1 \cancel{0} \times 6  \times 1 \cancel {0} }{ 64 \times 64 \times 1 \cancel {00} } }

 \qquad

 \tt { : \implies g = \dfrac{ 4002 \times 10}{4096}}

 \qquad

 \tt { : \implies g = \cancel { \dfrac{ 40020}{4096}} }

 \qquad

 \tt \purple { : \implies g = 9.7m/{s}^{2} \: or \: 9.8m/{s}^{2} }

Therefore, value of “g” is  \tt{ 9.7m/{s}^{2} \: or \: 9.8m/{s}^{2} }

_______________________________

Note : Refer to the attachment if you get any confusion in the calculation terms.

___________________________________

Attachments:
Similar questions