Physics, asked by Anonymous, 4 months ago

Calculate the value of λmax for solar radiation assuming that surface temperature of Sun is 5800 K (b=2.897×10^-3 mK).​

Answers

Answered by diajain01
74

{\boxed{\underline{ \orange{\tt{Required \:  \:  answer:-}}}}}

★GIVEN:-

  • Temperature of Sun = 5800K

  • λmaxT = constant b (2.897 × 10^-3mK)

★TO FIND:-

  • λmax

★FORMULA USED:-

  •   \displaystyle\sf \bf{T =  \frac{b}{λmax}}

★EXPLANATION:-

According to Wein's law,

λmaxT = Constant b = 2.892 × 10^-3mK

Hence,

 \displaystyle \sf \bf{ \frac{b}{T} = λmax}

 \displaystyle \sf \bf{λmax =  \frac{2.897× 10^-3mK}{5800K } }

 \displaystyle \sf \bf{λmax = 4.99 × 10^-7m}

In Å

 \displaystyle \: { \boxed{ \underline{ \color{teal}{ \sf{ \bf{λmax = 4990Å}}}}}}

So, the λmax for solar radiation will be 4990Å (approx).

Answered by Anonymous
17

Given :

T = 5800 K

\sf b = 2.897 × 10^{-3} mK

To find :

\sf \lambda_{max} = ?

Solution :

Wien's displacement law : The wavelength \sf \lambda_{max} corresponding to maximum energy emission by a black body at absolute temperature T is given by \sf \lambda_{max} = \dfrac{b}{T}.

\sf \lambda_{max} = \dfrac{2.897 × 10^{-3} m K}{5800 K}

\sf \lambda_{max} = 0.0004994 × 10^{-3} m

\sf \lambda_{max} = 4.994 × 10^{-3}m

\sf \lambda_{max} = 4994 Å

The value of \sf \lambda_{max} for solar radiation is 4994 Å.

Similar questions
Math, 4 months ago