Math, asked by Anonymous, 9 months ago

calculate the value of the x in each of the following figure
please answer with full explanation​

Attachments:

Answers

Answered by mithileshjha221989
2

in triangle ABE

the sum of interior angle of triangle is 180°

so, <EBA + <BAE + <AEB = 180°

65° +75° + <AEB = 180°

140° +<AEB = 180°

<AEB = 180°-140°

<AEB = 40°

now <AEB = <DEC ( by vertically opposite angle )

then <DEC = 40°

In triangle DEC

the sum of interior angle is 180°

then,

<DEC + <ECD + <CDE = 180°

40° + 110° + x = 180°

150° + x = 180°

x = 180°- 150°

x= 30°

Answered by BrainlyBeast
22

Sum of angle of triangle = 180 degree

In triangle ABE :

 \implies \: 75 + 65 +  \angle \: </em></strong><strong><em>A</em></strong><strong><em>E</em></strong><strong><em>B</em></strong><strong><em> = 180 \degree

 \implies140 +  \angle \: </em></strong><strong><em>A</em></strong><strong><em>E</em></strong><strong><em>B</em></strong><strong><em> \:  = 180 - 140

 \implies \angle \: </em></strong><strong><em>A</em></strong><strong><em>E</em></strong><strong><em>B</em></strong><strong><em> \:  = 180 - 140 = 40

By property of vertically opposite angles :

 \angle \: </em><em>A</em><em>E</em><em>B</em><em> </em><em>\:  =  \angle \: </em><em>D</em><em>E</em><em>C</em><em>

As, angle AEB = 40 degree

Angle DEC is = 40 degree

Now, in triangle DEC :

  \implies \: x \degree \:  + 110  \degree +  40 \degree = 180 \degree

 \implies \: x \degree + 150 \degree = 180 \degree

 \implies \: x \degree   = 180 - 150 \degree

 \red  \implies \: x \degree \:  = 130 \degree

Similar questions