Math, asked by khairnarnikhil22, 4 months ago

calculate the volume of a cone if the area of a base of right circular cone is 3850 sq m. and curve surface area is 4070 sq m.
options: (a) 14200 cube meter (b) 15500 cube meter (c) 15400 cube meter (d) 15000 cube meter. Give answer with explanation​

Answers

Answered by sethrollins13
62

Given :

  • Area of base of Right circular cone is 3850 m² .
  • Curved Surface Area of Cone is 4070 m² .

To Find :

  • Volume of Cone .

Solution :

Firstly we will find Radius :

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Circle=\pi{{r}^{2}}}

Putting Values :

\longmapsto\tt{3850=\dfrac{22}{7}\times{{r}^{2}}}

\longmapsto\tt{3850\times{7}=22\:{{r}^{2}}}

\longmapsto\tt{26950=22\:{{r}^{2}}}

\longmapsto\tt{\dfrac{26950}{22}={{r}^{2}}}

\longmapsto\tt{\sqrt{1225}=r}

\longmapsto\tt\bf{35\:m=r}

_______________________

Now , We will calculate Slant Height :

Using Formula :

\longmapsto\tt\boxed{C.S.A\:of\:Cone=\pi{rl}}

Putting Values :

\longmapsto\tt{4070=\dfrac{22}{{\cancel{7}}}\times{{\cancel{35}}}\times{l}}

\longmapsto\tt{4070=22\times{5}\times{l}}

\longmapsto\tt{4070=110\:l}

\longmapsto\tt{\cancel\dfrac{4070}{110}=l}

\longmapsto\tt\bf{37\:m=l}

_______________________

For Height :

\longmapsto\tt{{(l)}^{2}={(h)}^{2}+{(r)}^{2}}

\longmapsto\tt{{(37)}^{2}={(h)}^{2}+{(35)}^{2}}

\longmapsto\tt{1369={(h)}^{2}+1225}

\longmapsto\tt{1369-1225={(h)}^{2}}

\longmapsto\tt{\sqrt{144}=h}

\longmapsto\tt\bf{12\:m=h}

Now ,

For Volume :

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cone=\dfrac{1}{3}\pi{{r}^{2}h}}

Putting Values :

\longmapsto\tt{\dfrac{1}{{\cancel{3}}}\times\dfrac{22}{{\cancel{7}}}\times{{\cancel{35}}}\times{35}\times{{\cancel{12}}}}

\longmapsto\tt{22\times{35}\times{20}}

\longmapsto\tt\bf{15400\:{m}^{3}}

So , The Volume of Cone is 15400 m³ .

Option c ) 15400 m³ is Correct .


amansharma264: Nyccc
EliteSoul: Great
sethrollins13: Thank you ! :D
Anonymous: Awesome
Answered by BrainlyShadow01
74

To Find:-

  • Find the volume of the cone.

Given:-

  • Area of a base of right circular cone is 3850m².
  • Curve surface area is 4070m²

Solution:-

We know that:-

\tt\implies \: Area \: of \: circle \:  =   \pi{r}^{2}

\tt\implies \: 3850 =  \dfrac{22}{7}  \times  {r}^{2}

\tt\implies \: {r}^{2}  = \dfrac{3850 \times 7 }{22}

\tt\implies \: r =  \sqrt{1225}

\tt\implies \: r = 35m

Now,

\tt\implies \: C.S.A = \pi rl

Substituting Values:-

\tt\implies \:  4070 =  \dfrac{22}{7}  \times 35 \times l

\tt\implies \: 4070 = 110 l

\tt\implies \: l =  \cancel\dfrac{4070}{110}

\tt\implies \: l = 37m

To Find height:-

\tt\implies \:   {l}^{2}  =  {h}^{2}  +  {r}^{2}

\tt\implies \:   {(37)}^{2}  =  {h}^{2}  +  {(35)}^{2}

\tt\implies \: 1369  = {h}^{2} + 1225

\tt\implies \: {h}^{2}  = 1369 - 1225

\tt\implies \: h =  \sqrt{144}

\tt\implies \: h = 12m

Now,

To Find the volume of cone

\tt\implies \:  Volume \:  \: of \: \: Cone =  \dfrac{1}{3} \pi {r}^{2} h

\tt\implies \:  \dfrac{1}{3}  \times  \dfrac{22}{7}  \times 35 \times 35 \times 12

\tt\implies \:  {15400m}^{3}


Anonymous: Great
Similar questions