Chemistry, asked by sudhakarbm4, 5 months ago

calculate the wave length of radiation emitted with a frequency of 1,200KHz(c=3.0×108m/s​

Answers

Answered by roshan211220
4

Explanation:

v = 1200 x 10³ Hz

c= 3.0 x 10⁸ m/s

wave length = v/ c

= (1200 x 10³)/(3 x 10⁸)

= 400x 10^-5

= 4 x 10^-3 m

Answered by Mysterioushine
19

Correct Question :

Calculate the wave length of radiation emitted with a frequency of 1,200KHz. (c = 3.0×10⁸ m/s)

Given :

  • Frequency of the emitted radiation = 1,200 KHz
  • Velocity of light (c) = 3.0 × 10⁸ m/s

To Find :

  • The wavelength of the emitted radiation

Solution :

The relation between frequency , wavelength and velocity of light is given by ;

 \\  \star \: {\boxed{\purple{\sf{ \upsilon =  \frac{c}{ \lambda} }}}} \\  \\

Here ,

  • υ is frequency
  • c is velocity of light
  • λ is wavelength

We have ,

  • υ = 1200 KHz = 1200 × 10³ Hz = 1200000 Hz = 1200000 s⁻¹
  • c = 3 × 10⁸ m/s

Substituting the values we have ;

 \\   : \implies \sf \: 1200000 \:  {s}^{ - 1}  =  \frac{3 \times  {10}^{8} \: m {s}^{ - 1}  }{ \lambda}  \\  \\

 \\   : \implies \sf \: 12 \times  {10}^{5}  \:  {s}^{ - 1}  =  \frac{3 \times  {10}^{8}  \:  m{s}^{ - 1} }{ \lambda}  \\  \\

 \\   : \implies \sf \: 12 \times  {10}^{5} \:  {s}^{ - 1}   \times  \lambda = 3 \times  {10}^{8}  \: m {s}^{ - 1}  \\  \\

 \\   : \implies \sf \lambda =  \frac{3 \times  {10}^{8} \: m {s}^{ - 1}  }{12 \times  {10}^{5} \:  {s}^{ - 1}  }  \\  \\

 \\   : \implies \sf \lambda = 0.25 \times  {10}^{3}  \: m \\  \\

 \\   : \implies{\underline{\boxed{\pink{\mathfrak{ \lambda = 250 \: m}}}}}  \: \bigstar \\  \\

Hence ,

  • The wavelength of the emitted radiation is 250 m.

Similar questions