Chemistry, asked by niranjansammohanam, 1 day ago

calculate the wavelength of the light emitted by the transition of electron from n2=3 in the balmer series​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
44

Given

  • An elctron moves from n = 3 to n = 2

To Find

  • Wavelength

Solution

☯ 1/λ = RZ²(1/n²L - 1/n²H)

  • Where R is the Rydberg's constant which is equal to 109667 cm⁻¹

━━━━━━━━━━━━━━━━━━━━━━━━━

✭ According to the Question :

➞ 1/λ = RZ²(1/n²L - 1/n²H)

  • nL = 2
  • nH = 3
  • And we may assume that it is on a Hydrogen atom whose atomic number if 1

➞ 1/λ = 109667 × 1²(1/2² - 1/3²)

➞ 1/λ = 109667 × (1/4 - 1/9)

➞ 1/λ = 109667 × [(9-4)/(9×4)]

➞ 1/λ = 109667 × (5/36)

➞ 1/λ = (109667 × 5)/36

➞ λ = 3/(109667 × 5)

➞ λ = 0.000065 cm⁻¹

∴ The wavelength is 0.000065 cm⁻¹

Answered by ⱮøøɳƇⲅυѕɦεⲅ
14

Given :

  • The transition of electron from n2=3 in the balmer series.

What To Find :

  • Wavelength of light

Solution :

The expression for the wavelength is

\large\bf\blue{ \hookrightarrow} \rm \:\large \rm \: \frac{1}{λ}  \:  =  \: R   {Z}^{2} \:  \bigg( \:  \frac{1}{ {(n_1)}^{2}} \:  -  \:  \frac{1}{ {(n_2)}^{2} }  \bigg) \\

Where ,

  • λ= wavelength
  • R is Rydberg's Constant.
  • Z= Atomic number of atom
  • Value of R is 109667 cm-¹
  • n1 = 2
  • n2 = 3

Let assume that it is on hydrogen atom and atomic number of hydrogen is 1

Substuting the values in above expression

 \begin{cases}\bf\red{ \implies} \rm \: \frac{1}{λ}  \:  =  \: 109667 \times  \:  {(1)}^{2}  \:  \bigg( \:  \frac{1}{ {(2)}^{2}} \:  -  \:  \frac{1}{ {(3)}^{2} }  \bigg) \\  \\ \bf\red{ \implies} \rm \: \frac{1}{λ}  \:  =  \: 109667\:  \bigg( \:  \frac{1}{ {(4)}} \:  -  \:  \frac{1}{ {(9)} }  \bigg) \\  \\  \bf\red{ \implies} \rm \: \frac{1}{λ}  \:  =  \: 109667\:  \bigg(  \frac{9 \:  -  \: 4}{36}  \bigg)  \\  \\  \bf\red{ \implies} \rm \: \frac{1}{λ}  \:  =  \: 109667\:  \bigg(  \frac{5}{36}  \bigg) \\  \\ \bf\red{ \implies} \rm \: \frac{1}{λ}  \:  =   \frac{\: 109667\:  \times  \: 5 }{36}  \\  \\ \bf\red{ \implies} \rm \: \frac{1}{λ}  \:  =   \frac{\: 548335 }{36}  \\  \\ \bf\red{ \implies} \rm \: λ \:  =    \frac{36}{548335}  \\  \\ \bf\red{ \implies} \rm \: λ \:  = \:      \frac{ \cancel{36}}{ \cancel{548335}}  \\  \\ \bf\red{ \implies} \rm \: λ \:  =    0.00006565 \end{cases}

\boxed{\rm \: \rm\purple{ The  \: wavelength \:  is \: \bf\purple{ 0.00006565} \rm \:  {cm}^{ - 1} }}

Similar questions