Physics, asked by soumyadeepsarkar, 10 months ago

Calculate the work done by the brakes of car of mass 1000kg when its speed is reduced from 20 m/s to 10m/s?​

Answers

Answered by ShivamKashyap08
7

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

  • Mass of the car (m) = 1000 kg.
  • Initial velocity of the car (u) = 20 m/s.
  • Final velocity of the car (v) = 10 m/s.

\huge{\bold{\underline{Explanation:-}}}

\rule{300}{1.5}

Firstly, we need to find the Initial Kinetic energy of the car.

Therefore,

\large{\boxed{\tt K.E_i = \dfrac{1}{2}mu^2}}

Substituting the values,

\large{\tt K.E_i = \dfrac{1}{2} \times 1000 \times (20)^2}

\large{\tt K.E_i = \dfrac{1}{2} \times 1000 \times 400}

\large{\tt K.E_i = \dfrac{1}{\cancel{2}} \times 1000 \times \cancel{400}}

\large{\tt K.E_i = 1000 \times 200}

It becomes,

\large{\boxed{\tt K.E_i = 2 \times 10^{5} \: J}}

The initial Kinetic energy is 2 × 10 Joules.

\rule{300}{1.5}

\rule{300}{1.5}

Now, The final Kinetic energy of the car,

\large{\boxed{\tt K.E_f = \dfrac{1}{2}mv^2}}

Substituting the values,

\large{\tt K.E_f = \dfrac{1}{2} \times 1000 \times (10)^2}

\large{\tt K.E_f = \dfrac{1}{2} \times 1000 \times 100}

\large{\tt K.E_f = \dfrac{1}{\cancel{2}} \times 1000 \times \cancel{100}}

\large{\tt K.E_f = 1000 \times 50}

It becomes,

\large{\tt K.E_f = 5 \times 10^{4}}

Raising the power to 5, Then.

\large{\boxed{\tt K.E_f = 0.5 \times 10^{5} \: J}}

The final Kinetic energy is 0.5 × 10 Joules.

\rule{300}{1.5}

\rule{300}{1.5}

Now, From Work - energy Theorem,

\large{\boxed{\tt W = K.E_f - K.E_i}}

Here

  • "W" denotes Work done.
  • {\tt K.E_i} denotes initial Kinetic energy.
  • {\tt K.E_f} denotes Final Kinetic energy.

Now,

Substituting the values,

\large{\tt W = 0.5 \times 10^5 - 2 \times 10^5}

\large{\tt W = (0.5 - 2) \times 10^5}

It comes as,

\huge{\boxed{\boxed{\tt W = - 1.5 \times 10^5 \: J}}}

So, The work done by the brakes to reduce its speed from 20 m/s to 10 m/s is -1.5 × 10 Joules.

Note:-

  • Here negative sign indicates that the work done is against the motion of the car.

\rule{300}{1.5}

Answered by Anonymous
3

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

From the Question,

  • Mass of the Car,m = 1000 Kg

  • Initial Velocity,u = 20 m/s

  • Final Velocity,v = 10 m/s

To find

Work Done by the brakes of the car

Work Kinetic Energy Theorem

The rate of work done by a net force is equal to the change in Kinetic Energy

\huge{\boxed{\boxed{\green{\rm{W = \Delta{K}}}}}}

{\large\mathtt{\Delta{K} = {K}_{f} - {K}_{i}}}

Initial Kinetic Energy :

\sf{{K}_{i} = \frac{1000}{2} \times {(20)}^{2}} \\ \\  \implies \ \sf{{K}_{i} = \frac{{4 \times 10}^{5}}{2} } \\ \\ \implies \ \boxed{\sf{{K}_{i} = 2 \times {10}^{5}}}

Final Kinetic Energy :

\displaystyle{\sf{{K}_{f} = \frac{1000}{2} \times {(-10)}^{2}}}\\ \\ \implies \ \boxed{\sf{{K}_{f} = 0.5 \times {10}^{5}}}}\\ \\

Putting the values,we get:

 \\ \\ \sf{W =  \frac{1}{2}mv {}^{2} -  \frac{1}{2} mu {}^{2}    } \\  \\  \longrightarrow \:  \sf{W =  \frac{m}{2}(v {}^{2}   - u {}^{2}) } \\  \\  \longrightarrow \:  \sf{W =  (0.5 \times {10}^{5} - 2 \times {10}^{5})} \\  \\  \huge{ \rm{ \longrightarrow \:  W \:  =  - 1.5 \times {10}^{5} \: J}}

Thus,the work done by the brakes is -1.5 × 10^5 J

The negative sign indicates force is applied in direction opposite to the relative velocity of the car. Hence, Negative Work

Similar questions