Physics, asked by ExclusiveCouple, 4 months ago

Calculate the work done required to stop a car of mass 50 kg moving with a velocity of 54 km/hr.​

Answers

Answered by Anonymous
5

Answer refers to the attachment.

Attachments:
Answered by 0neAboveAll
0

\large\mathbb \blue{\fcolorbox{blue}{black} {  \ HERE\ IS\ YOUR\ ANSWER \  }}

\bf{ \pmb{ \gray{ \underline{SOLUTION}}}} \\ \small{ \sf \: According \: to \: Work \: Energy \: Theorem :−} \\ \\ \sf\red{ \boxed{ \bf Work \ Done = \Delta Energy_{Kinetic\ energy} } }\\\\\rm \small\: Work \ Done = \dfrac{1}{2}mv^2- \dfrac{1}{2}mu^2 \\\\\rm \small \: Work \ Done = \dfrac{1}{2}m ( v^2 - u^2 ) \\\\\rm \small Work \ Done = \dfrac{1}{2}\times 50kg [ (0m/s)^2 - (54km/hr)^2 ] \\\\\rm \small Work \ Done = 25kg \bigg\lgroup 0m^2/s^2 - \bigg(54 \times \dfrac{5}{18}m/s.\bigg)^2 \bigg\rgroup \\\\\rm \small \: Work \ Done = 25kg [ 0m^2/s^2 - (15m/s)^2 ] \\\\\rm \small \: Work \ Done = 25kg \times - 225 m^2/s^2 \\\\ \large \boxed{\blue{\mathbb {WORK \ DONE = -5625 \ JOULES .} }}

Answered by 0neAboveAll
0

\large\mathbb \blue{\fcolorbox{blue}{black} {  \ HERE\ IS\ YOUR\ ANSWER \  }}

\bf{ \pmb{ \gray{ \underline{SOLUTION}}}} \\ \small{ \sf \: According \: to \: Work \: Energy \: Theorem :−} \\ \\ \sf\red{ \boxed{ \bf Work \ Done = \Delta Energy_{Kinetic\ energy} } }\\\\\rm \small\: Work \ Done = \dfrac{1}{2}mv^2- \dfrac{1}{2}mu^2 \\\\\rm \small \: Work \ Done = \dfrac{1}{2}m ( v^2 - u^2 ) \\\\\rm \small Work \ Done = \dfrac{1}{2}\times 50kg [ (0m/s)^2 - (54km/hr)^2 ] \\\\\rm \small Work \ Done = 25kg \bigg\lgroup 0m^2/s^2 - \bigg(54 \times \dfrac{5}{18}m/s.\bigg)^2 \bigg\rgroup \\\\\rm \small \: Work \ Done = 25kg [ 0m^2/s^2 - (15m/s)^2 ] \\\\\rm \small \: Work \ Done = 25kg \times - 225 m^2/s^2 \\\\ \large \boxed{\blue{\mathbb {WORK \ DONE = -5625 \ JOULES .} }}

Answered by 0neAboveAll
0

\large\mathbb \blue{\fcolorbox{blue}{black} {  \ HERE\ IS\ YOUR\ ANSWER \  }}

\bf{ \pmb{ \gray{ \underline{SOLUTION}}}} \\ \small{ \sf \: According \: to \: Work \: Energy \: Theorem :−} \\ \\ \sf\red{ \boxed{ \bf Work \ Done = \Delta Energy_{Kinetic\ energy} } }\\\\\rm \small\: Work \ Done = \dfrac{1}{2}mv^2- \dfrac{1}{2}mu^2 \\\\\rm \small \: Work \ Done = \dfrac{1}{2}m ( v^2 - u^2 ) \\\\\rm \small Work \ Done = \dfrac{1}{2}\times 50kg [ (0m/s)^2 - (54km/hr)^2 ] \\\\\rm \small Work \ Done = 25kg \bigg\lgroup 0m^2/s^2 - \bigg(54 \times \dfrac{5}{18}m/s.\bigg)^2 \bigg\rgroup \\\\\rm \small \: Work \ Done = 25kg [ 0m^2/s^2 - (15m/s)^2 ] \\\\\rm \small \: Work \ Done = 25kg \times - 225 m^2/s^2 \\\\ \large \boxed{\blue{\mathbb {WORK \ DONE = -5625 \ JOULES .} }}

Similar questions