Chemistry, asked by chetansanap, 1 year ago

calculate uncertainty in position of electron moving with the velocity 300 m/s with 0.001% accuracy.
(mass of electron=9.1×10^-31 kg)
(h=6.625×10^-34 j/s)

Answers

Answered by Mysterioushine
26

\huge {\bold {\underline {\underline{Given : - }}}}

  • Velocity of electron is 300 m/s

  • Percentage Uncertainity in it's velocity is 0.001%

  • h = 6.625 × 10⁻³⁴J/sec

  • Mass of electron = 9.1 × 10⁻³¹ kg

\huge {\bold {\underline {\underline{To \: find  : - }}}}

  • Uncertainity in it's position

\huge {\bold {\underline {\underline{Solution : - }}}}

%ΔV is given by ,

 \large {\sf {\underline {\bold {\boxed {\bigstar{ \:  |  \%\triangle v =  \dfrac{ \triangle  v}{v}  \times 100}}}}}}

We have ,

  • v = 300 m/s
  • % Δv = 0.001%

 \sf  :  \implies \: 0.001 =  \dfrac{ \triangle v}{300}  \times 100 \\  \\  \sf  : \implies \: 0.001 =  \dfrac{ \triangle v}{3  \cancel{00}}  \times 1 \cancel{00} \\  \\  \sf :  \implies \: 0.001 =  \dfrac{ \triangle  v}{3}  \\  \\   \sf:  \implies3 \times 0.001 =  \triangle v \\  \\   \sf : \implies {\bold {\boxed {\pink {\triangle v = 3 \times  {10}^{ - 3} \: m {s}^{ - 1}  }}}}

From Heisenberg's uncertainity principle ,

 \large {\sf  {\underline{\bold {\boxed{\bigstar{  \:  (\triangle x)(m \triangle  v) =  \dfrac{h}{4\pi} }}}}}}

Where ,

  • Δx is uncertainity in position
  • m is mass
  • Δv is uncertainity in velocity
  • h is planck's constant

  \sf:  \implies \: ( \triangle x)[ (9.1 \times  {10}^{ - 31}  ( 3 \times  {10}^{ - 3})]=  \dfrac{6.625 \times  {10}^{ - 34} }{4 \times 3.14}  \\  \\    \sf: \implies (\triangle x)(27.3 \times  {10}^{ - 34} ) =  \dfrac{6.625 \times  {10}^{ - 34} }{4 \times 3.14}  \\  \\ \sf  :  \implies( \triangle x) =  \dfrac{6.625 \times  {10}^{ - 34} }{4 \times 3.14 \times 27.3 \times  {10}^{ - 34} }  \\   \\\sf   : \implies (\triangle x) =  \dfrac{6.625 \times  \cancel{ {10}^{ - 34} }}{342.888 \times  \cancel{ {10}^{ - 34} }}  \\  \\ \sf :   \implies  ( \triangle x) =  \dfrac{6.625}{342.888}  \\  \\   \sf : \implies  {\bold {\boxed {\pink{(\triangle x) = 0.019 \: m}}}}

∴ The uncertainity in position of the electron is 0.019 m

Answered by abdulrubfaheemi
3

Answer:

\huge {\bold {\underline {\underline{Given : - }}}}

Given:−

Velocity of electron is 300 m/s

Percentage Uncertainity in it's velocity is 0.001%

h = 6.625 × 10⁻³⁴J/sec

Mass of electron = 9.1 × 10⁻³¹ kg

\huge {\bold {\underline {\underline{To \: find : - }}}}

Tofind:−

Uncertainity in it's position

\huge {\bold {\underline {\underline{Solution : - }}}}

Solution:−

%ΔV is given by ,

\large {\sf {\underline {\bold {\boxed {\bigstar{ \: | \%\triangle v = \dfrac{ \triangle v}{v} \times 100}}}}}}

★∣%△v=

v

△v

×100

We have ,

v = 300 m/s

% Δv = 0.001%

\begin{gathered} \sf : \implies \: 0.001 = \dfrac{ \triangle v}{300} \times 100 \\ \\ \sf : \implies \: 0.001 = \dfrac{ \triangle v}{3 \cancel{00}} \times 1 \cancel{00} \\ \\ \sf : \implies \: 0.001 = \dfrac{ \triangle v}{3} \\ \\ \sf: \implies3 \times 0.001 = \triangle v \\ \\ \sf : \implies {\bold {\boxed {\pink {\triangle v = 3 \times {10}^{ - 3} \: m {s}^{ - 1} }}}}\end{gathered}

:⟹0.001=

300

△v

×100

:⟹0.001=

3

00

△v

×1

00

:⟹0.001=

3

△v

:⟹3×0.001=△v

:⟹

△v=3×10

−3

ms

−1

From Heisenberg's uncertainity principle ,

\large {\sf {\underline{\bold {\boxed{\bigstar{ \: (\triangle x)(m \triangle v) = \dfrac{h}{4\pi} }}}}}}

★(△x)(m△v)=

h

Where ,

Δx is uncertainity in position

m is mass

Δv is uncertainity in velocity

h is planck's constant

\begin{gathered} \sf: \implies \: ( \triangle x)[ (9.1 \times {10}^{ - 31} ( 3 \times {10}^{ - 3})]= \dfrac{6.625 \times {10}^{ - 34} }{4 \times 3.14} \\ \\ \sf: \implies (\triangle x)(27.3 \times {10}^{ - 34} ) = \dfrac{6.625 \times {10}^{ - 34} }{4 \times 3.14} \\ \\ \sf : \implies( \triangle x) = \dfrac{6.625 \times {10}^{ - 34} }{4 \times 3.14 \times 27.3 \times {10}^{ - 34} } \\ \\\sf : \implies (\triangle x) = \dfrac{6.625 \times \cancel{ {10}^{ - 34} }}{342.888 \times \cancel{ {10}^{ - 34} }} \\ \\ \sf : \implies ( \triangle x) = \dfrac{6.625}{342.888} \\ \\ \sf : \implies {\bold {\boxed {\pink{(\triangle x) = 0.019 \: m}}}}\end{gathered}

:⟹(△x)[(9.1×10

−31

(3×10

−3

)]=

4×3.14

6.625×10

−34

:⟹(△x)(27.3×10

−34

)=

4×3.14

6.625×10

−34

:⟹(△x)=

4×3.14×27.3×10

−34

6.625×10

−34

:⟹(△x)=

342.888×

10

−34

6.625×

10

−34

:⟹(△x)=

342.888

6.625

:⟹

(△x)=0.019m

∴ The uncertainity in position of the electron is 0.019 m

Similar questions