calculate uncertainty in position of electron moving with the velocity 300 m/s with 0.001% accuracy.
(mass of electron=9.1×10^-31 kg)
(h=6.625×10^-34 j/s)
Answers
- Velocity of electron is 300 m/s
- Percentage Uncertainity in it's velocity is 0.001%
- h = 6.625 × 10⁻³⁴J/sec
- Mass of electron = 9.1 × 10⁻³¹ kg
- Uncertainity in it's position
%ΔV is given by ,
We have ,
- v = 300 m/s
- % Δv = 0.001%
From Heisenberg's uncertainity principle ,
Where ,
- Δx is uncertainity in position
- m is mass
- Δv is uncertainity in velocity
- h is planck's constant
∴ The uncertainity in position of the electron is 0.019 m
Answer:
\huge {\bold {\underline {\underline{Given : - }}}}
Given:−
Velocity of electron is 300 m/s
Percentage Uncertainity in it's velocity is 0.001%
h = 6.625 × 10⁻³⁴J/sec
Mass of electron = 9.1 × 10⁻³¹ kg
\huge {\bold {\underline {\underline{To \: find : - }}}}
Tofind:−
Uncertainity in it's position
\huge {\bold {\underline {\underline{Solution : - }}}}
Solution:−
%ΔV is given by ,
\large {\sf {\underline {\bold {\boxed {\bigstar{ \: | \%\triangle v = \dfrac{ \triangle v}{v} \times 100}}}}}}
★∣%△v=
v
△v
×100
We have ,
v = 300 m/s
% Δv = 0.001%
\begin{gathered} \sf : \implies \: 0.001 = \dfrac{ \triangle v}{300} \times 100 \\ \\ \sf : \implies \: 0.001 = \dfrac{ \triangle v}{3 \cancel{00}} \times 1 \cancel{00} \\ \\ \sf : \implies \: 0.001 = \dfrac{ \triangle v}{3} \\ \\ \sf: \implies3 \times 0.001 = \triangle v \\ \\ \sf : \implies {\bold {\boxed {\pink {\triangle v = 3 \times {10}^{ - 3} \: m {s}^{ - 1} }}}}\end{gathered}
:⟹0.001=
300
△v
×100
:⟹0.001=
3
00
△v
×1
00
:⟹0.001=
3
△v
:⟹3×0.001=△v
:⟹
△v=3×10
−3
ms
−1
From Heisenberg's uncertainity principle ,
\large {\sf {\underline{\bold {\boxed{\bigstar{ \: (\triangle x)(m \triangle v) = \dfrac{h}{4\pi} }}}}}}
★(△x)(m△v)=
4π
h
Where ,
Δx is uncertainity in position
m is mass
Δv is uncertainity in velocity
h is planck's constant
\begin{gathered} \sf: \implies \: ( \triangle x)[ (9.1 \times {10}^{ - 31} ( 3 \times {10}^{ - 3})]= \dfrac{6.625 \times {10}^{ - 34} }{4 \times 3.14} \\ \\ \sf: \implies (\triangle x)(27.3 \times {10}^{ - 34} ) = \dfrac{6.625 \times {10}^{ - 34} }{4 \times 3.14} \\ \\ \sf : \implies( \triangle x) = \dfrac{6.625 \times {10}^{ - 34} }{4 \times 3.14 \times 27.3 \times {10}^{ - 34} } \\ \\\sf : \implies (\triangle x) = \dfrac{6.625 \times \cancel{ {10}^{ - 34} }}{342.888 \times \cancel{ {10}^{ - 34} }} \\ \\ \sf : \implies ( \triangle x) = \dfrac{6.625}{342.888} \\ \\ \sf : \implies {\bold {\boxed {\pink{(\triangle x) = 0.019 \: m}}}}\end{gathered}
:⟹(△x)[(9.1×10
−31
(3×10
−3
)]=
4×3.14
6.625×10
−34
:⟹(△x)(27.3×10
−34
)=
4×3.14
6.625×10
−34
:⟹(△x)=
4×3.14×27.3×10
−34
6.625×10
−34
:⟹(△x)=
342.888×
10
−34
6.625×
10
−34
:⟹(△x)=
342.888
6.625
:⟹
(△x)=0.019m
∴ The uncertainity in position of the electron is 0.019 m