Calculating gravity with inclometer?
Answers
Answered by
0
One common method for determining the tilt or inclination of a system is to integrate the output of a gyroscope. Although this method is straightforward, error associated with null bias stability can quickly compound as the integration period is increased, causing an apparent rotation even when the device is stationary.
In some applications, where the net acceleration or force on a system over time is gravity, an accelerometer can be used to measure the static angle of tilt or inclination. Such applications include gaming, horizon detection in digital cameras, and detecting the heading of a device in industrial and medical applications.
The underlying assumption in inclination sensing with an accelerometer is that the only acceleration stimulus is that associated with gravity. In practice, signal processing can be performed on the signal output to remove high frequency content from the output signal, so some AC acceleration can be tolerated.
Inclination sensing uses the gravity vector, and its projection on the axes of the accelerometer, to determine the tilt angle. Because gravity is a DC acceleration, any forces that result in an additional DC acceleration corrupt the output signal and result in an incorrect calculation. Sources of DC acceleration include the period of time when a vehicle is accelerating at a constant rate and rotating devices that induce a centripetal acceleration on the accelerometer. In addition, rotating an accelerometer through gravity causes an apparent AC acceleration as the projection of gravity on the axes of interest changes. Any filtering of the acceleration signal before calculating the inclination affects how quickly the output settles to the new static value.
This article discusses the basic principles for converting the output of an accelerometer to an angle of inclination. This discussion includes how to calculate the ideal inclination angle for a single-axis, dual-axis, or triple-axis solution. In addition, some basic information about calibration is included to reduce error from offset and sensitivity mismatch
In some applications, where the net acceleration or force on a system over time is gravity, an accelerometer can be used to measure the static angle of tilt or inclination. Such applications include gaming, horizon detection in digital cameras, and detecting the heading of a device in industrial and medical applications.
The underlying assumption in inclination sensing with an accelerometer is that the only acceleration stimulus is that associated with gravity. In practice, signal processing can be performed on the signal output to remove high frequency content from the output signal, so some AC acceleration can be tolerated.
Inclination sensing uses the gravity vector, and its projection on the axes of the accelerometer, to determine the tilt angle. Because gravity is a DC acceleration, any forces that result in an additional DC acceleration corrupt the output signal and result in an incorrect calculation. Sources of DC acceleration include the period of time when a vehicle is accelerating at a constant rate and rotating devices that induce a centripetal acceleration on the accelerometer. In addition, rotating an accelerometer through gravity causes an apparent AC acceleration as the projection of gravity on the axes of interest changes. Any filtering of the acceleration signal before calculating the inclination affects how quickly the output settles to the new static value.
This article discusses the basic principles for converting the output of an accelerometer to an angle of inclination. This discussion includes how to calculate the ideal inclination angle for a single-axis, dual-axis, or triple-axis solution. In addition, some basic information about calibration is included to reduce error from offset and sensitivity mismatch
Answered by
0
★ 彡 [ Hɪ Mᴀᴛᴇ ]彡 ★
┉┉┉┉┉┉┉┉┉┉┉┉┉
₳nswer :
➨ We can take the example of refraction in glass slab that refracts of the away.
➥ The light that comes and enters in the glass slab is refracted in the slab.
➭ Points to be remembered in refraction
➠Refraction is a apprison in our eyes that seems to be happen but not really.
➠Refraction takes place in many types substances.
➠I have explained the the method of refraction in glass slab.
➠I refraction the checking should be properly done.
- - - - - - - - - - - - - - ☆ - - - - - - - - - - - - - - -
Hope It Help U
Similar questions