Physics, asked by sahninandlal270, 9 months ago

Calculating the uncertainty in the position of a dust particle with mass equal to 1 mg if uncertainty in its velocity is 5.5 × 10? 64 m/s.

Answers

Answered by Anonymous
6

 \boxed{ \huge{ \mathfrak{ \fcolorbox{red}{yellow}{\purple{Answer}}}}} \\  \\  \star \:   \red{\mathfrak{Given}} \\  \\  \implies \rm \: uncercertainty \: in \: velocity \:  \triangle{v} =  5.5 \times  {10}^{64}   \: \frac{ m}{s}  \\  \\  \implies \rm \: mass \: of  \: particle \: m =  1mg =  {10}^{ - 6} kg \\  \\  \star \:  \red{ \mathfrak{To \: Find}} \\  \\  \implies  \rm \: uncertainty \:  in \:  position \:  \triangle{x} \\  \\  \star \:  \red{ \mathfrak{Formula}} \\  \\  \implies  \:  \boxed{ \rm{ \pink{ \triangle{x} \times m( \triangle{v}) =  \frac{h}{4\pi} = 5 .27\times  {10}^{ - 35}  }}} \\  \\  \star \:  \red{ \mathfrak{Calculation}} \\  \\  \implies \rm \:  \triangle{x} =  \frac{5.27 \times  {10}^{ - 35} }{m \times \triangle{v}}  \\  \\  \implies \rm \:  \triangle{x} =  \frac{5.27 \times  {10}^{ - 35} }{ {10}^{ - 6} \times5.5 \times  {10}^{64}   }  = 0.1 \times  {10}^{ - 93}  \: m \\  \\  \implies  \: \boxed{ \mathfrak{ \orange{ \triangle{ \rm{x}} = 1 \times  {10}^{ - 94} \:  m}}}

Similar questions