Math, asked by evrimesa, 1 month ago

Calculus 1: Logorithmic differentiation

Attachments:

Answers

Answered by shadowsabers03
4

Given,

\longrightarrow y=(6+6x)^{\frac{4}{x}}

At x=1,

\longrightarrow y=(6+6(1))^{\frac{4}{1}}

\longrightarrow y=12^4

Taking log on both sides,

\longrightarrow \log y=\log\left[(6+6x)^{\frac{4}{x}}\right]

Since \log\left(a^b\right)=b\log a,

\longrightarrow \log y=\dfrac{4}{x}\log(6+6x)

Differentiating wrt x,

\longrightarrow\dfrac{d}{dx}\left(\log y\right)=\dfrac{d}{dx}\left[\dfrac{4}{x}\log(6+6x)\right]

By chain rule,

  • \dfrac{du}{dx}=\dfrac{du}{dy}\cdot\dfrac{dy}{dx}

and product rule,

  • \dfrac{d}{dx}(uv)=\dfrac{du}{dx}\cdot v+u\cdot\dfrac{dv}{dx}

we get,

\longrightarrow\dfrac{d}{dy}\left(\log y\right)\cdot\dfrac{dy}{dx}=\dfrac{d}{dx}\left(\dfrac{4}{x}\right)\log(6+6x)+\dfrac{4}{x}\cdot\dfrac{d}{dx}\left[\log(6+6x)\right]

\longrightarrow\dfrac{1}{y}\cdot\dfrac{dy}{dx}=-\dfrac{4}{x^2}\log(6+6x)+\dfrac{4}{x}\cdot\dfrac{6}{6+6x}

\longrightarrow\dfrac{1}{y}\cdot\dfrac{dy}{dx}=-\dfrac{4}{x^2}\log(6+6x)+\dfrac{4}{x(1+x)}

\longrightarrow\dfrac{dy}{dx}=y\left(\dfrac{4}{x(1+x)}-\dfrac{4\log(6+6x)}{x^2}\right)

\longrightarrow\dfrac{dy}{dx}=4y\left(\dfrac{x^2-x(1+x)\log(6+6x)}{x^3(1+x)}\right)

\longrightarrow\dfrac{dy}{dx}=4\left(6+6x\right)^{\frac{4}{x}}\left(\dfrac{x-(1+x)\log(6+6x)}{x^2(1+x)}\right)

\longrightarrow\underline{\underline{\dfrac{dy}{dx}=\dfrac{4\left(6+6x\right)^{\frac{4}{x}}\left[x-(1+x)\log(1+x)-(1+x)\log6\right]}{x^2(1+x)}}}

The slope of the tangent line at x=1 is given by,

\longrightarrow\dfrac{dy}{dx}(x=1)=\dfrac{4\left(6+6(1)\right)^{\frac{4}{1}}\left[1-(1+1)\log(1+1)-(1+1)\log6\right]}{1^2(1+1)}

\longrightarrow\underline{\underline{\dfrac{dy}{dx}(x=1)=12^4\left(2-4\log12\right)}}

Then the equation of the tangent line at x=1 will be,

\longrightarrow y-12^4=12^4\left(2-4\log 12\right)(x-1)

\longrightarrow\underline{\underline{12^4\left(2-4\log 12\right)x-y-12^4\left(1-4\log 12\right)=0}}

Similar questions