Math, asked by evrimesa, 1 month ago

Calculus I: Implicit differentiation

Attachments:

Answers

Answered by SrijanShrivastava
1

2 {x}^{2}  + 5x + xy  = 3

 \frac{d}{dx} (2 {x}^{2}  + 5x + xy) = 0

4x + 5 + y + x \frac{dy}{dx}  = 0

 \frac{dy}{dx}  =  \frac{ - 4x - y - 5}{x}

y'(x) =  - 4 - ( \frac{5 +  \frac{3 - 2 {x}^{2} - 5x }{x} }{x} )

y'(x) =  - 4 -  \frac{5x + 3 - 2 {x}^{2}  - 5x}{ {x}^{2} }

y'(x)  = - 4 +  \frac{2 {x}^{2}  - 3}{ {x}^{2} }

y'(x) =  - 2 -  \frac{3}{ {x}^{2} }

\boxed{y'(3) =  - 2 -  \frac{1}{3}  =  -  \frac{7}{3}≈-2.33}

Thus, The Equation of Tangent at (3,–10) is:

y  + 10 =  -  \frac{7}{3} (x - 3)

 - 3y  - 30 = 7x - 21

\boxed{7x + 3y + 9 = 0}

Similar questions