Math, asked by 3wis, 3 months ago

Calculus I

lim \frac{x^{4} - 3x^{3} + x^{2} - 3x}{2x-6} \\x-\  \textgreater \ 3

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: \displaystyle \lim_{x \:  \to \: 3} \:\dfrac{ {x}^{4} -  {3x}^{3}  +  {x}^{2}  - 3x}{2x - 6}

If we substitute x = 3 directly, we get

 \rm \:  \:  =  \: \:\dfrac{ {(3)}^{4} -  {3(3)}^{3}  +  {(3)}^{2}  - 3 \times 3}{2 \times 3 - 6}

\rm \:  \:  =  \: \dfrac{81 - 81 + 9 - 9}{6 - 6}

\rm \:  \:  =  \: \dfrac{0}{0}  \: which \: is \: indeterminant \: form

Consider,

\rm :\longmapsto\: \displaystyle \lim_{x \:  \to \: 3} \:\dfrac{ {x}^{4} -  {3x}^{3}  +  {x}^{2}  - 3x}{2x - 6}

\rm \:  \:  =  \:\displaystyle \lim_{x \:  \to \: 3} \: \dfrac{ {x}^{3}(x - 3) + x(x - 3)}{2(x - 3)}

\rm \:  \:  =  \:\displaystyle \lim_{x \:  \to \: 3} \: \dfrac{ ({x}^{3} + x) \: \cancel{ (x - 3)}}{2 \:  \cancel{(x - 3)}}

\rm \:  \:  =  \: \displaystyle \lim_{x \:  \to \: 3} \:\dfrac{ {x}^{3}  + x}{2}

\rm \:  \:  =  \: \dfrac{ {(3)}^{3} + 3 }{2}

\rm \:  \:  =  \: \dfrac{27 + 3}{2}

\rm \:  \:  =  \: \dfrac{30}{2}

\rm \:  \:  =  \: 15

Hence,

\bf\implies \:\: \displaystyle \lim_{x \:  \to \: 3} \bf \:\dfrac{ {x}^{4} -  {3x}^{3}  +  {x}^{2}  - 3x}{2x - 6}   = 15

Additional Information :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{sin \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{tan \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{tan^{ - 1}  \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{sin^{ - 1}  \: x}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{log(1 \:  +  \: x)}{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

\begin{gathered}(6)\:{\underline{\boxed{\bf{\blue{{\tt \:\lim_{x\to 0} \: \dfrac{ {e}^{x} - 1 }{x} \:  =  \: 1 }}}}}} \\ \end{gathered}

Answered by Lifecoach
3

x+1=0 x = -1

a(-1)^3 + 3(-1)^2 -13 = -a-10

5(-1)^3 -8(-1) +a = a+3

a+3 = -a-10 ➜ 2a = -13 → a= -13/2 = -6.5

Similar questions