Math, asked by ayoubmariam739, 19 days ago

#calculus #limit
\lim _ { x \rightarrow 0 } \frac { 3 ^ { 2 x } + 3 ^ { x + 1 } - 4 } { 3 ^ { 2 x } - 1 }

Answers

Answered by Anonymous
6

We need to evaluate the given limits:

 \longrightarrow\lim  \limits_ { x \rightarrow 0 } \dfrac { 3 ^ { 2 x } + 3 ^ { x + 1 } - 4 } { 3 ^ { 2 x } - 1 }

By directly substituting the limits, we get:

\dfrac { 3 ^ { 2 (0) } + 3 ^ { 0 + 1 } - 4 } { 3 ^ { 2 (0) } - 1} =  \dfrac{1 - 1}{1  - 1}  =  \boxed{ \dfrac{0}{0}}

This is an indeterminate quantity therefore we have to use another method to solve the problem.

Solution:

 \implies\lim  \limits_ { x \rightarrow 0 } \dfrac { 3 ^ { 2 x } + 3 ^ { x + 1 } - 4 } { 3 ^ { 2 x } - 1}

 \implies\lim  \limits_ { x \rightarrow 0 } \dfrac { 3 ^ { 2 x } + 3 ^ { x + 1 } - 1 - 3 } { 3 ^ { 2 x } - 1}

{ \implies\lim  \limits_ { x \rightarrow 0 } \dfrac {( 3 ^ { 2 x }  - 1)+ (3 ^ { x + 1 }  - 3 )} { 3 ^ { 2 x } - 1}}

{ \implies\lim  \limits_ { x \rightarrow 0 }  \cancel\dfrac {( 3 ^ { 2 x }  - 1)}{ {3}^{2x}  - 1}+ \dfrac{ (3 ^ { x + 1 }  - 3 )} { 3 ^ { 2 x } - 1}}

{ \implies1 + \lim  \limits_ { x \rightarrow 0 } \dfrac{ 3(3 ^ { x}  - 1)} { (3 ^ {x })^{2}  - (1)^{2} }}

{ \implies1 + \lim  \limits_ { x \rightarrow 0 } \dfrac{ 3 \cancel{(3 ^ { x}  - 1)}} { (3 ^ {x } + 1) \cancel{( {3}^{x} - 1) }}}

{ \implies1 + \lim  \limits_ { x \rightarrow 0 } \dfrac{ 3} { (3 ^ {x } + 1)}}

{ \implies1 + \dfrac{ 3} { (3 ^ {0} + 1)}}

{ \implies1 + \dfrac{ 3} { (1+ 1)}}

{ \implies1 + \dfrac{ 3}2}

{ \implies \dfrac{ 5}2}

Therefore the required answer is:

 \boxed{ \lim  \limits_ { x \rightarrow 0 } \dfrac { 3 ^ { 2 x } + 3 ^ { x + 1 } - 4 } { 3 ^ { 2 x } - 1 } =  \frac{5}{2} }

Similar questions