Math, asked by ANISHxSHARMA, 10 months ago

can any body help me to do this question​

Attachments:

Answers

Answered by BrainlyTornado
4

QUESTION:

 If \:\sin(\theta)  = 12 \: find \\ (i) \sec(\theta)  -  \tan(\theta)  \\ (ii) \frac{1}{ {\cos}^{2}\theta }   -  { \tan }^{2} \theta

ANSWER:

\sec(\theta)  -  \tan(\theta)  =  \frac{11}{ \sqrt{143} }\\ \frac{1}{ {\cos}^{2}\theta }   -  { \tan }^{2} \theta  = 1

GIVEN:

 \sin(\theta)  = 12

FORMULA:

 \cos(\theta)  =  \sqrt{1 -  { \sin}^{2} \theta}  \\  \tan(\theta)  =  \frac{ \sin(\theta) }{ \cos(\theta) }  \\  \sec(\theta)  = \frac{ 1 }{ \cos(\theta) }

EXPLANATION:

(i)

\cos(\theta)  =  \sqrt{1 -  \frac{1}{ {12}^{2} } }   \\  =  \sqrt{ \frac{ {12}^{2} - 1 }{144} }  \\  =  \frac{ \sqrt{143} }{12}  \\  = \frac{1}{ \cos(\theta)  }  -  \frac{ \sin(\theta) }{ \cos(\theta) } \\  = \frac{1 -  \sin(\theta) }{ \cos(\theta) } \\  =  \frac{1 -  \frac{1}{12} }{ \frac{ \sqrt{143} }{12} }  \\  =  \frac{ \frac{12 - 1}{12} }{  \frac{ \sqrt{143} }{12}  }  \\  \sec(\theta)  -  \tan(\theta)  =  \frac{11}{ \sqrt{143} }

(ii)

 =  {(\frac{1}{ \cos})^{2} } -  {( \frac{ \sin(\theta) }{ \cos(\theta) })}^{2}  \\  \frac{1}{ { \cos }^{2} \theta}  -    \frac{{ \sin}^{2}\theta}{{ \cos}^{2}\theta}  \\   = \frac{1 -  \frac{1}{144} }{ \frac{143}{144} }  \\  =  \frac{ \frac{144 - 1}{144} }{ \frac{143}{144} }   \\ =  \frac{ \frac{143}{144} }{ \frac{143}{144} }  \\\frac{1}{ {\cos}^{2}\theta }   -  { \tan }^{2} \theta  = 1

\sec(\theta)  -  \tan(\theta)  =  \frac{11}{ \sqrt{143} }\\ \frac{1}{ {\cos}^{2}\theta }   -  { \tan }^{2} \theta  = 1

HERE FROM (ii) we also proved sec²theta -tan²theta=1

Answered by Gangster56
2

First put formula and find the answer and open bracket...

Attachments:
Similar questions