Math, asked by sharanyadey2007, 8 months ago

can any one please solve it step by step ❓❓​

Attachments:

Answers

Answered by SrijanShrivastava
2

Using the general binomial theorem , we have:

(a+b)³ = ³C₀ a³b⁰ + ³C₁ a²b+ ³C₂ ab² + ³C₃

∴ (a+b)³ = a³+3a²b+3ab²+b³

Using the general trinomial theorem, we have:

(a + b + c) ^{2}  = \sum _{i + j + k = 2}  [\binom{2}{i,j,k} {a}^{i}  {b}^{j}   {c}^{k} ]

∴ (a+b+c)² = a²+b²+c²+2(ab+bc+ac)

So,

Using the first expansion:

( \frac{4x}{3y }  +  \frac{3y}{4x} ) ^{3}  = ( \frac{4x}{3y} ) ^{3}  + 3( \frac{4 x }{3y} . \frac{3y}{4x} )( \frac{4x}{3y}  +  \frac{3y}{4x} ) + {( \frac{3y}{4x}) }^{3}

( \frac{4x}{3y} +   \frac{3y}{4x} ) ^{3}  =  \frac{64 {x}^{3} }{27 {y}^{3} }  +  \frac{4x}{y}  +  \frac{9y}{4x}  +  \frac{27 {y}^{3} }{64 {x}^{3} }

Using the second expansion :

(a - b - 5) ^{2}  = (a) ^{2}  + ( - b) {}^{2}  + ( - 5) {}^{2}   + 2( - ab  + 5b - 5a)

(a - b - 5) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 25 - 2ab - 10a + 10b

Similar questions