Math, asked by abin2005john, 7 months ago

can any one say this answer​

Attachments:

Answers

Answered by Anonymous
1

Answer:

IT'S NOT RIGHT QUESTION.

Step-by-step explanation:

MARK AS BRAINLIEST ANSWER AND FOLLOW ME.

Answered by pulakmath007
10

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric identity that

1.

1 +  {tan}^{2} \theta \:  =  {sec}^{2}  \theta

2.

{sin}^{2} \theta = 1 - {cos}^{2} \theta

TO PROVE

 \displaystyle \: (1 +  {tan}^{2} \theta \:  )(1 +  \frac{1}{ {tan}^{2} \theta \:  }) =   =    \displaystyle \:    \frac{1}{{sin}^{2} \theta -  \: {sin}^{4} \theta\: } \:

CALCULATION

 \displaystyle \: (1 +  {tan}^{2} \theta \:  )(1 +  \frac{1}{ {tan}^{2} \theta \:  })

  = \displaystyle \:  {sec}^{2} \theta \:  \times   \frac{(1 +   {tan}^{2} \theta \:  ) }{ {tan}^{2} \theta \:  }

  = \displaystyle \:  {sec}^{2} \theta \:  \times   \frac{{sec}^{2} \theta \:   }{ {tan}^{2} \theta \:  }

 =    \displaystyle \:   \frac{1}{{cos}^{2} \theta} \:  \times  \frac{1}{{cos}^{2} \theta} \: \times   \frac{{cos}^{2} \theta \:   }{ {sin}^{2} \theta \:  }

  =    \displaystyle \:   \frac{1}{{cos}^{2} \theta} \:  \times  \frac{1}{{sin}^{2} \theta} \:

  =    \displaystyle \:   \frac{1}{1 - {sin}^{2} \theta} \:  \times  \frac{1}{{sin}^{2} \theta} \:

  =    \displaystyle \:    \frac{1}{{sin}^{2} \theta -  \: {sin}^{4} \theta\: } \:

Similar questions