Math, asked by bhadraarpan2, 5 months ago

can any one solve this question ??​

Attachments:

Answers

Answered by BrainlyIAS
20

Question :

If \sf 4^x - 4^{x-1}=24 , then find the value of x .

Solution :

\sf 4^x - 4^{x-1}=24

\bullet\ \; \sf \pink{a^{m+n}=a^m . a^n}

\bullet\ \; \sf \pink{a^{m-n}=\dfrac{a^m}{a^n}}

\bullet\ \; \sf \pink{a^{-1}=\dfrac{1}{a}}

:\implies \sf 4^x - 4^x .4^{-1} =24

:\implies \sf 4^x - \dfrac{4^x }{4} =24

:\implies \sf 4^x \left( 1- \dfrac{1}{4}\right) =24

:\implies \sf 4^x \left(  \dfrac{3}{4}\right) =24

:\implies \sf 4^x=32

:\implies \sf \left(2^2\right)^x = (2)^5

:\implies \sf (2)^{2x}=(2)^5

  • Bases are equal , so exponents must be equal .

:\implies \sf 2x=5

:\implies \green{ \textsf{\textbf{x = }} \dfrac{\textsf{\textbf{5}}}{\textsf{\textbf{2}}}}\ \; \; \bigstar


Anonymous: Great!
BrainlyIAS: Thanks EmpireWarrior ! ♥️❤️
Answered by Anonymous
35

Answer:

Given :-

  • \sf {4}^{x} -\: {4}^{x - 1} =\: 24

To Find :-

  • What is the value of x.

Formula Used :-

\leadsto \sf {a}^{m} \times {a}^{n} =\: {a}^{m + n}

\leadsto \sf \dfrac{{a}^{m}}{{a}^{n}} =\: {a}^{m - n}

\leadsto \sf {a}^{- m} =\: \dfrac{1}{{a}^{m}}

Solution :-

\longmapsto \sf {4}^{x} -\: {4}^{x - 1} =\: 24

\implies \sf {4}^{x} -\: {4}^{x} \times {4}^{- 1} =\: 24

By taking 4x common we get,

\implies \sf {4}^{x}\bigg(1 - {4}^{- 1}\bigg) =\: 24

\implies \sf {4}^{x}\bigg(1 - \dfrac{1}{4}\bigg) =\: 24

\implies \sf {4}^{x}\bigg(\dfrac{4 - 1}{4}\bigg) =\: 24

\implies \sf {4}^{x}\bigg(\dfrac{3}{4}\bigg) =\: 24

\implies \sf {4}^{x} =\: 24 \times \dfrac{4}{3}

\implies \sf {4}^{x} =\: \dfrac{\cancel{96}}{\cancel{3}}

\implies \sf {4}^{x} =\: 32

\implies \sf {\cancel{(2)}}^{2x} =\: {\cancel{(2)}}^{5}

\implies \sf 2x =\: 5

\implies \sf\bold{\purple{x =\: \dfrac{5}{2}}}

{\underline{\boxed{\small{\bf{\therefore The\: value\: of\: x\: is\: \dfrac{5}{2}\: .}}}}}

\\

SOME IMPORTANT FORMULA :-

\sf ({a}^{m})^{n} =\: {a}^{m \times n}

\sf \bigg({\dfrac{a}{b}}\bigg)^{m} =\: \dfrac{a^m}{b^m}

\sf {a}^{1} =\: a

\sf {a}^{0} =\: 1

\sf {a}^{\dfrac{x}{y}} =\: \sqrt[y]{{a}^{x}}


Anonymous: Nice!
Similar questions