Math, asked by Anonymous, 8 months ago

can anybody answer me this in full details as early as possible​

Attachments:

Answers

Answered by ishwarsinghdhaliwal
3

Let the side of an equilateral triangle be a

Area \:  of  \: an  \: equilateral \:  triangle  =  \frac{ \sqrt{3} }{4}  {a}^{2}

According to the question

 \frac{ \sqrt{3} }{4} (a + 2)^{2}  =  \frac{ \sqrt{3} }{4}  {a}^{2}  + 2 \sqrt{3}  \\  (a + 2)^{2} =  \frac{ \frac{ \sqrt{3} }{4}  {a}^{2} + 2 \sqrt{3}  }{ \frac{ \sqrt{3} }{4} }  \\(a + 2)^{2}  =  \frac{ \frac{ \sqrt{3} }{4}  {a}^{2} }{ \frac{ \sqrt{3} }{4} } +  \frac{2 \sqrt{3} }{ \frac{ \sqrt{3} }{4} }   \\ (a + 2) ^{2}  =  {a }^{2} + 2 \sqrt{3}  \times  \frac{4}{ \sqrt{3} }  \\   {a}^{2}  + 4 + 4a =  {a}^{2}  + 8 \\ 4 + 4a = 8 \\ 4a = 8 + 4  \\ 4a = 12 \\ a =  \frac{12}{4}  \\ a = 3

Therefore, side of an equilateral triangle= 3cm

Similar questions