can anybody do this question of integration
Attachments:
Answers
Answered by
0
Let I=∫cos9xsinxdxI=∫cos9xsinxdx
=∫cos8xcosxsinxdx=∫cos8xcosxsinxdx
=∫(cos2x)4cosxsinxdx=∫(cos2x)4cosxsinxdx
=∫(1−sin2x)4cosxsinxdx=∫(1−sin2x)4cosxsinxdx
Let sinx=usinx=u
⟹du=cosxdx⟹du=cosxdx
⟹I=∫(1−u2)4udu⟹I=∫(1−u2)4udu
=∫1−4u2+6u4−4u6+u8udu=∫1−4u2+6u4−4u6+u8udu
=∫1u−4u+6u3−4u5+u7du=∫1u−4u+6u3−4u5+u7du
=ln|u|−2u2+3u42−2u63+=ln|u|−2u2+3u42−2u63+u88+Cu88+C
=ln|sinx|−2sin2x+3sin4x2−2sin6x3+sin8x8+C=ln|sinx|−2sin2x+3sin4x2−2sin6x3+sin8x8+C
864 Views ·
=∫cos8xcosxsinxdx=∫cos8xcosxsinxdx
=∫(cos2x)4cosxsinxdx=∫(cos2x)4cosxsinxdx
=∫(1−sin2x)4cosxsinxdx=∫(1−sin2x)4cosxsinxdx
Let sinx=usinx=u
⟹du=cosxdx⟹du=cosxdx
⟹I=∫(1−u2)4udu⟹I=∫(1−u2)4udu
=∫1−4u2+6u4−4u6+u8udu=∫1−4u2+6u4−4u6+u8udu
=∫1u−4u+6u3−4u5+u7du=∫1u−4u+6u3−4u5+u7du
=ln|u|−2u2+3u42−2u63+=ln|u|−2u2+3u42−2u63+u88+Cu88+C
=ln|sinx|−2sin2x+3sin4x2−2sin6x3+sin8x8+C=ln|sinx|−2sin2x+3sin4x2−2sin6x3+sin8x8+C
864 Views ·
Similar questions