can anybody help me faster
Attachments:
Answers
Answered by
1
An equation ax2 + bx + c = 0 has real roots when b2 is greater than 4ac
There are 6×6×6 =216 ways to choose coefficients
when b=1 there is no root
when b=2 there are real roots when a=1 and c=1
( i.e 1 way)
when b =3 ( 1,1),( 2,1) and (1,2)
(satisfies condition 3 way)
when b= 4 (1,1),( 1,2),( 2,1),(2,2),(1,3),( 3,1),(1,4),(4,1)
(satisfies the condition 8)
ways when b=5 (1,1),( 1,2),( 2,1),(2,2),(1,3),( 3,1),(1,4),(4,1),(1,5),(5,1) (1,6)( 6,1), (2,3), (3,2),( 2,2)
( satisfies 14 ways )
when b=6 (1,1),( 1,2),( 2,1),(2,2),(1,3),( 3,1),(1,4),(4,1),(1,5),(5,1) (1,6)( 6,1), (2,3), (3,2),( 2,2)(2,4), (4,2),(3,3 )−
( 17 ways )
total no of outcomes =43 Probability = 43/216
Hope this information will clear your doubts about this topic
There are 6×6×6 =216 ways to choose coefficients
when b=1 there is no root
when b=2 there are real roots when a=1 and c=1
( i.e 1 way)
when b =3 ( 1,1),( 2,1) and (1,2)
(satisfies condition 3 way)
when b= 4 (1,1),( 1,2),( 2,1),(2,2),(1,3),( 3,1),(1,4),(4,1)
(satisfies the condition 8)
ways when b=5 (1,1),( 1,2),( 2,1),(2,2),(1,3),( 3,1),(1,4),(4,1),(1,5),(5,1) (1,6)( 6,1), (2,3), (3,2),( 2,2)
( satisfies 14 ways )
when b=6 (1,1),( 1,2),( 2,1),(2,2),(1,3),( 3,1),(1,4),(4,1),(1,5),(5,1) (1,6)( 6,1), (2,3), (3,2),( 2,2)(2,4), (4,2),(3,3 )−
( 17 ways )
total no of outcomes =43 Probability = 43/216
Hope this information will clear your doubts about this topic
anuritha:
hope this answer helps you
Similar questions