Math, asked by 7605976487, 1 month ago

can anybody please prove that​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Given \:Question - }}

Prove that

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}  \frac{ \sqrt{x}  - 1 +  \sqrt{x - 1} }{ \sqrt{ {x}^{2}  - 1} }  =  \frac{1}{ \sqrt{2} }

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}  \frac{ \sqrt{x}  - 1 +  \sqrt{x - 1} }{ \sqrt{ {x}^{2}  - 1} }

If we put directly x = 1, we get

\rm \:  =  \:\dfrac{ \sqrt{1} - 1 -  \sqrt{1 - 1}  }{ \sqrt{1 - 1} }

\rm \:  =  \:\dfrac{1 - 1 -  0  }{ 0}

\rm \:  =  \:\dfrac{0}{ 0} \: which \: is \: meaningless

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}  \frac{ \sqrt{x}  - 1 +  \sqrt{x - 1} }{ \sqrt{ {x}^{2}  - 1} }

can be rewritten as

\rm \:  =  \:\displaystyle\lim_{x \to 1}  \frac{ \sqrt{x} - 1 }{ \sqrt{ {x}^{2}  - 1} } + \displaystyle\lim_{x \to 1}  \frac{ \sqrt{x - 1} }{ \sqrt{ {x}^{2}  - 1} }

\rm \:  =  \:\displaystyle\lim_{x \to 1}  \frac{ \sqrt{x} - 1 }{ \sqrt{ {x}^{2}  - 1} } \times  \frac{ \sqrt{x}  + 1}{ \sqrt{x}  + 1}  + \displaystyle\lim_{x \to 1}  \frac{ \sqrt{x - 1} }{ \sqrt{(x - 1)(x + 1)} }

We know,

\boxed{ \rm \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}}

So, using this identity, we get

\rm \:  =  \:\displaystyle\lim_{x \to 1}  \frac{x - 1}{ \sqrt{(x - 1)(x + 1)}( \sqrt{x}  + 1)} + \displaystyle\lim_{x \to 1}  \frac{1}{ \sqrt{x + 1} }

\rm \:  =  \:\displaystyle\lim_{x \to 1}  \frac{ {( \sqrt{x - 1} )}^{2} }{ \sqrt{(x - 1)(x + 1)}( \sqrt{x}  + 1)} + \displaystyle\lim_{x \to 1}  \frac{1}{ \sqrt{x + 1} }

\rm \:  =  \:\displaystyle\lim_{x \to 1}  \frac{ \sqrt{x - 1} }{ \sqrt{(x + 1)}( \sqrt{x}  + 1)} +  \frac{1}{ \sqrt{1 + 1} }

\rm \:  =  \:\dfrac{ \sqrt{1 - 1} }{ \sqrt{1 + 1} ( \sqrt{1}  + 1)}  + \dfrac{1}{ \sqrt{2} }

\rm \:  =  \:\dfrac{0 }{ \sqrt{2} ( 1  + 1)}  + \dfrac{1}{ \sqrt{2} }

\rm \:  =  \:  \dfrac{1}{ \sqrt{2} }

Hence,

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}  \frac{ \sqrt{x}  - 1 +  \sqrt{x - 1} }{ \sqrt{ {x}^{2}  - 1} }  =  \frac{1}{ \sqrt{2} }

Additional Information :-

\boxed{ \rm \:\displaystyle\lim_{x \to 0}  \frac{sinx}{x} = 1}

\boxed{ \rm \:\displaystyle\lim_{x \to 0}  \frac{tanx}{x} = 1}

\boxed{ \rm \:\displaystyle\lim_{x \to 0}  \frac{log(1 + x)}{x} = 1}

\boxed{ \rm \:\displaystyle\lim_{x \to 0}  \frac{ {e}^{x}  - 1}{x} = 1}

\boxed{ \rm \:\displaystyle\lim_{x \to 0}  \frac{ {a}^{x}  - 1}{x} = loga}

Similar questions