Math, asked by Anonymous, 6 months ago

can anybody solve it .....................​

Attachments:

Answers

Answered by BrainlyYuVa
8

\Large{\underline{\underline{\mathfrak{\red{\bf{Solution}}}}}}

\Large{\underline{\mathfrak{\orange{\bf{Given}}}}}

  • x² + y² = 25xy _______(1)

\Large{\underline{\mathfrak{\orange{\bf{prove}}}}}

  • 2 log (x + y) = 3 log 3 + log x + log y

\Large{\underline{\underline{\mathfrak{\red{\bf{Explanation}}}}}}

Add 2xy in equ(1) of both side

➡ x² + y² + 2xy = 25xy + 2xy

➡ (x + y)² = 27xy_______(2)

Using Some Important formula

log (ab) = log a + log b

log a^a = a log a.

Then,take log of equ(2) in both side

➡ log (x+y)² = log (27xy)

➡2.log(x+y) = log 27 + log x + log y

➡2.log(x+y) = log 3³ + log x + log y

➡2.log(x+y) = 3 log 3 + log x + log y

That's proved.

________________

Answered by Anonymous
3

\Large{\underline{\underline{\mathfrak{\red{\bf{Explanation}}}}}}</p><p> </p><p>

Add 2xy in equ(1) of both side

➡ x² + y² + 2xy = 25xy + 2xy

➡ (x + y)² = 27xy_______(2)

 \tt{Using  \: Some  \: Important  \: formula }

★ log (ab) = log a + log b

★ log a^a = a log a.

Then,take log of equ(2) in both side

➡ log (x+y)² = log (27xy)

➡2.log(x+y) = log 27 + log x + log y

➡2.log(x+y) = log 3³ + log x + log y

➡2.log(x+y) = 3 log 3 + log x + log y

That's proved.

________________

Similar questions