Math, asked by pavithrarb, 1 year ago

Can anybody solve this.
let p= tan A+ sec A. Then find the value of p+1/p

Answers

Answered by MathBrainbox
4

p =  \tan \alpha   +  \sec\alpha  \\   { \sec } ^{2}  \alpha  -  { \tan }^{2}  \alpha  = 1 \\ ( \sec \alpha  +  \tan \alpha )( \sec \alpha  -  \tan \alpha ) = 1 \\ p( \sec \alpha  -  \tan \alpha ) = 1 \\  \sec \alpha  -  \tan \alpha  =  \frac{1}{p}  \\  \\ p +  \frac{1}{p}  =  \sec \alpha  +  \tan \alpha  +  \sec \alpha  -  \tan \alpha  \\  = 2 \sec \alpha

Similar questions