Math, asked by amanedgeboy, 1 year ago

can anybody solve this sum. 80x^3 - 45x ​

Answers

Answered by charliejaguars2002
4

Answer:

5x(4x+3)(4x-3)

Step-by-step explanation:

To solve this problem, first you have to use the distributive property of a(b+c)=ab+ac.

First, factor out by common term.

5x(16x²-9)

Then, solve.

16x²-9=(4x+3)(4x-3)

In conclusion, the correct answer is 5x(4x+3)(4x-3).

Answered by AbhijithPrakash
12

Answer:

80x^3-45x:\quad 5x\left(4x+3\right)\left(4x-3\right)

Step-by-step explanation:

80x^3-45x

\black{\mathrm{Factor\:out\:common\:term\:}5x:}

80x^3-45x

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c}

\gray{x^3=x^2x}

=80x^2x-45x

\gray{\mathrm{Rewrite\:}45\mathrm{\:as\:}5\cdot \:9}

\gray{\mathrm{Rewrite\:}80\mathrm{\:as\:}5\cdot \:16}

=5\cdot \:16x^2x-5\cdot \:9x

\gray{\mathrm{Factor\:out\:common\:term\:}5x}

=5x\left(16x^2-9\right)

\black{\mathrm{Factor}\:16x^2-9:}

16x^2-9

\gray{\mathrm{Rewrite\:}16x^2-9\mathrm{\:as\:}\left(4x\right)^2-3^2}

=\left(4x\right)^2-3^2

\gray{\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)}

\gray{\left(4x\right)^2-3^2=\left(4x+3\right)\left(4x-3\right)}

=\left(4x+3\right)\left(4x-3\right)

=5x\left(4x+3\right)\left(4x-3\right)

Similar questions