Math, asked by himanshuraj010402, 5 months ago

can anyone answer my question please help me​

Attachments:

Answers

Answered by jgetchell0136
1

Answer:

Step-by-step explanation:

70-9

Answered by Asterinn
6

1. Evaluate :-

 \tt (i)  \: {3}^{ - 4}  =   { \bigg(\dfrac{1}{3}\bigg)}^{4}   \\  \\  \tt \implies { \bigg(\dfrac{1}{3}\bigg)}^{4}  = { \bigg(\dfrac{1}{3}\bigg)} \times { \bigg(\dfrac{1}{3}\bigg)} \times { \bigg(\dfrac{1}{3}\bigg)} \times { \bigg(\dfrac{1}{3}\bigg)} \\  \\ \tt \implies {3}^{ - 4}    = { \bigg(\dfrac{1}{81}\bigg)} \\  \\ \tt ( ii) \:  {( - 4)}^{3}  =  - 4 \times  - 4 \times  - 4 \\ \\   \tt \implies  - 4 \times  - 4 \times  - 4 = -  64 \\  \\  \\ \tt (iii) \:  \:  ( {\dfrac{3}{4})}^{ - 2}   = ( {\dfrac{4}{3})}^{  2} \\  \\ \tt \implies  ( {\dfrac{4}{3})}^{  2} = {\dfrac{4}{3}} \times {\dfrac{4}{3}}\\  \\ \tt \implies  {\dfrac{4}{3}} \times {\dfrac{4}{3}} =  \dfrac{16}{9}  \\  \\  \\  \tt (iv) \:  \:   {(\dfrac{ - 2}{3} )}^{ - 5}  = {(\dfrac{ - 3}{2} )}^{ 5}\\  \\  \tt \implies{(\dfrac{ - 3}{2} )}^{ 5} = \dfrac{ - 3}{2} \times \dfrac{ - 3}{2} \times \dfrac{ - 3}{2} \times \dfrac{ - 3}{2} \times \dfrac{ - 3}{2} \\  \\  \tt \implies \:  \frac{ - 243}{32}  \\  \\  \tt (v) \:  \: { (\dfrac{5}{7}) }^{0}  = 1

2. Evaluate :-

 \longrightarrow { \bigg[  {\bigg( \dfrac{ - 2}{3}\bigg )}^{3}   \bigg]}^{ - 2}  = {\bigg( \dfrac{ - 2}{3}\bigg )}^{ - 6} \\  \\ \longrightarrow    {\bigg( \dfrac{ - 2}{3}\bigg )}^{ - 6} = {\bigg( \dfrac{ - 3}{2}\bigg )}^{  6}\\  \\ \longrightarrow     {\bigg( \dfrac{ - 3}{2}\bigg )}^{  6} = \dfrac{729}{64}

3. Simplify :-

 \sf  \longrightarrow ({3}^{ - 1}  + {6}^{ - 1} ) \div   {(\dfrac{3}{4} )}^{ - 1}  \\  \\ \sf  \longrightarrow ( \dfrac{1}{3}   +  \dfrac{1}{6} ) \div   {(\dfrac{4}{3} )}\\  \\ \sf  \longrightarrow (  \dfrac{2 + 1}{6} ) \div   {(\dfrac{4}{3} )} = (  \dfrac{3}{6} ) \div   {(\dfrac{4}{3} )} \\  \\ \longrightarrow  (  \dfrac{3}{6} )  \times   {(\dfrac{3}{4} )} =  \dfrac{3}{8}

4. By what number should..... ?

 \tt \: let \: the \: number \: be  \:  \bold{x}. \\ \\  \tt  \rightarrow \: according \: to \: the \: question :  \\  \\   \tt \implies  {\bigg( \dfrac{ - 2}{3} \bigg)}^{ - 3}  \div x = {\bigg( \dfrac{4}{9} \bigg)}^{ - 2} \\  \\   \tt \implies  {\bigg( \dfrac{ - 2}{3} \bigg)}^{ - 3}   \times   \dfrac{1}{x}  = {\bigg(  {(\dfrac{2}{3})}^{2}  \bigg)}^{ - 2} \\  \\   \tt \implies  {\bigg( \dfrac{ - 2}{3} \bigg)}^{ - 3}     = {\bigg(  {\dfrac{2}{3}}  \bigg)}^{ - 4} x\\  \\   \tt \implies   \frac{{\bigg( \dfrac{ - 2}{3} \bigg)}^{ - 3}}{{\bigg(  {\dfrac{2}{3}}  \bigg)}^{ - 4}}      =  x \\  \\ \tt \implies    \dfrac{ - 2}{3}   =  x \\  \\   \tt \therefore \: answer \: is  \:  =  \dfrac{ - 2}{3}

5. By what number should ......... ?

 \tt let \: the \: number \: be  \: \bold{x} . \\  \\ \tt according \: to \: the \: question :  \\  \\   \tt \rightarrow{( - 3)}^{ - 1} x =  {6}^{ - 1}  \\  \\ \rightarrow  \tt \dfrac{ - 1}{3}  \times x =  \dfrac{ 1}{6}\\  \\ \rightarrow  \tt  x =  \dfrac{  1}{6} \times ( - 3) =  \dfrac{ - 1}{2}

6. Express each .......... form.

 \tt( i)345 = 3.45 \times  {10}^{2}  \\  \\ \tt(ii)180000 = 1.8 \times  {10}^{5} \\  \\ \tt(iii)0.000003 = 3 \times  {10}^{ - 6}  \\  \\  \tt(iv)0.000027 = 2.7 \times  {10}^{ - 5}

Similar questions