Math, asked by adhira0506, 3 months ago

can anyone answer the question​

Attachments:

Answers

Answered by ItzBrainlyBeast
20

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ GiVeN :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Base of the tile = 24cm}

\qquad\tt{:}\longrightarrow\large\textsf{Height of the tile = 0.1 m = 10cm}

\qquad\tt{:}\longrightarrow\large{\sf{Area\;\; of\;\; the\;\; floor\;\; = 1080 m^2 = 10800000 cm^2}}

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ To FiNd :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{No. of tiles required to cover the floor = ?}

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ SoLuTioN :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{Area}}_{\small\textsf{( \; Parallelogram \; )}} = \large\sf{Base \times  Height}$}

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ SoLuTiOn :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\sf{Area \;\;of\;\; tiles = 24 \times 10}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\sf{= 240\;\; cm^2}}

__________________________________________________________

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{No. of tiles =$\cfrac{\large\textsf{Area of the floor}}{\large\textsf{Area of the tiles}}$}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{ =$\cancel\cfrac{\large\textsf{10800000}}{\large\textsf{240}}$}\\\\\\\qquad\tt{:}\longrightarrow\boxed{\therefore\large\textsf{ \; \; No. of tiles = 45000}}

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ MoRe fOrMuLaS :-}}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{L.S.A.}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{2h ( l + b )}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{2 ( lb + bh + hl )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cuboid \; )}} = \large\sf{l\times b\times h}$}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{L.S.A.}}_{\large\textsf{( \; Cube \; )}} = \large\sf{4\times l^2}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cube \; )}} = \large\sf{6 \times l^2}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cube \; )}} = \large\sf{l^2}$}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{C.S.A.}}_{\large\textsf{( \; Cylinder \; )}} = \large\sf{2 \times \pi \; rh}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cylinder \; )}} = \large\sf{2\pi r \times ( r + h )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cylinder \; )}} = \large\sf{\pi r^2h}$}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{C.S.A.}}_{\large\textsf{( \; Cone \; )}} = \large\sf{\pi rl}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cone \; )}} = \large\sf{\pi r \times ( r + l )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cone \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{1}}{\large\textsf{3}}$}\large\sf{\times \pi r^2h}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Sphere \; )}} = \large\sf{4\pi r^2}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Sphere \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{4}}{\large\textsf{3}}$}\large\sf{\times \pi r^3}

\large\textsf{                                                               }

Answered by debanjanghosh369
4

therefore 45000 tiles are needed

hope it helps you

Attachments:
Similar questions