Math, asked by mahendraprasadpadhi, 9 months ago

Can anyone answer this ?

Attachments:

Answers

Answered by shadowsabers03
1

\displaystyle\large\boxed{\sf{(D)\quad\!}\bf{6}}

Given,

\displaystyle\longrightarrow\sf{(a+b)^2=c^2+ab}

\displaystyle\longrightarrow\sf{a^2+2ab+b^2=c^2+ab}

\displaystyle\longrightarrow\sf{a^2+ab+b^2=c^2}

But by cosine rule,

\displaystyle\longrightarrow\sf{a^2+ab+b^2=a^2+b^2-2ab\cos C}

\displaystyle\longrightarrow\sf{\cos C=-\dfrac{1}{2}}

This implies C is an obtuse angle, and therefore,

\displaystyle\Longrightarrow\sf{C=120^{\circ}}

Now,

\displaystyle\longrightarrow\sf{8\cos A\cos B=8\cdot\dfrac{1}{2}[\cos(A+B)+\cos(A-B)]}

\displaystyle\longrightarrow\sf{8\cos A\cos B=4[\cos(A+B)+\cos(A-B)]\quad\quad\dots(1)}

But since A, B and C are angles in a triangle,

\displaystyle\longrightarrow\sf{A+B+C=180^{\circ}}

\displaystyle\longrightarrow\sf{A+B=180^{\circ}-C}

\displaystyle\longrightarrow\sf{\cos(A+B)=\cos(180^{\circ}-C)}

\displaystyle\longrightarrow\sf{\cos(A+B)=\dfrac{1}{2}\quad\quad\left[\because\ C=120^{\circ}\right]}

Then (1) becomes,

\displaystyle\longrightarrow\sf{8\cos A\cos B=4\left[\dfrac{1}{2}+\cos(A-B)\right]}

\displaystyle\longrightarrow\sf{8\cos A\cos B=2+4\cos(A-B)\quad\quad\dots(2)}

To get maximum value of \displaystyle\sf{8\cos A\cos B,\quad\cos(A-B)} should be maximum and hence \displaystyle\sf{|A-B|} should be minimum.

[This is because value of \displaystyle\sf{\cos\theta} decreases on increasing the magnitude of \displaystyle\sf{\theta,} but for \displaystyle\sf{\theta\in\left[2n\pi,\ (2n+1)\pi\right],\ n\in\mathbb{Z}.} ]

Thus the minimum possible value for \displaystyle\sf{|A-B|} is 0 and hence \displaystyle\sf{\max(\cos(A-B))=1.}

[Remember, \displaystyle\sf{|x|\geq0.} ]

It also implies that \displaystyle\sf{A=B=30^{\circ}.}

Therefore (2) will be,

\displaystyle\longrightarrow\sf{\max(8\cos A\cos B)=2+4\times1}

\displaystyle\longrightarrow\sf{\underline{\underline{\max(8\cos A\cos B)=\bf{6}}}}

Hence the answer is \displaystyle\boxed{\sf{(D)\quad\!}\bf{6}}

Similar questions