can anyone answer this question?
Attachments:
Answers
Answered by
0
Answer:
\bf{\frac{x^2}{36}-\frac{y^2}{64}=1}36x2−64y2=1
Step-by-step explanation:
\text{Formula used:}Formula used:
cosec^2A-cot^2A=1cosec2A−cot2A=1
\text{Given:}Given:
x=6\:cosec\theta\:\text{and}\:y=8\:cot\thetax=6cosecθandy=8cotθ
\implies\:\frac{x}{6}=cosec\theta\:\text{and}\:\frac{y}{8}=cot\theta⟹6x=cosecθand8y=cotθ
\text{we know that}\:cosec^2\theta-cot^2\theta=1we know thatcosec2θ−cot2θ=1
\implies\:(\frac{x}{6})^2-(\frac{y}{8})^2=1⟹(6x)2−(8y)2=1
\implies\:\frac{x^2}{36}-\frac{y^2}{64}=1⟹36x2−64y2=1
Similar questions