Math, asked by thrbot0, 4 days ago

can anyone answer this question​

Attachments:

Answers

Answered by saichavan
24

 \displaystyle \lim_{x \to \: 0} ( \frac{ {3}^{x} - 1 }{ \sqrt{1 + x}  - 1} )

Evaluate using L'Hopital's Rule.

 \displaystyle \:  \lim_{x \to \: 0}( \frac{ \frac{d}{dx} ( {3}^{x}  - 1)}{ \frac{d}{dx}( \sqrt{1 + x}  - 1) } )

Calculate the derivatives.

 \displaystyle \lim_{x \to  0}( \frac{ ln(3)  \times  {3}^{x} }{ \dfrac{1}{2 \sqrt{1 + x} } } )

Simplify.

 \displaystyle  \lim_{x \to 0}(2 ln(3)  \times  {3}^{x}  \times  \sqrt{1 + x} )

 \displaystyle 2 ln(3)  \times  {3}^{0}  \times  \sqrt{1 + 0}

 \boxed{\green{{ \green{2 ln(3) }}}}

Answered by sonuanand05899
0

answer:

2ln (3)

the way is stated up

Attachments:
Similar questions