Math, asked by potterhead32, 2 months ago

can anyone answer this question plz.
I know the answer , but I don't know how to solve it , so plz send the explanation .

Answer is (2) , plz send the explanation​

Attachments:

Answers

Answered by Anonymous
82

Step-by-step explanation:

x = 1/(3-√5) (given)

 =  \frac{1}{3 -  \sqrt{5} }  \times  \frac{3 +  \sqrt{5} }{3 +  \sqrt{5} }  \\  \\  \\  =  \frac{3 +  \sqrt{5} }{4}  \\  \\  \\

\implies x = (3+√5)/4

and 1/x = 3-√5

Now,

 (\sqrt{x}  +  \frac{1}{ \sqrt{x} }) {}^{2}   = x +  \frac{1}{x}  + 2 \\  \\  =  \frac{3 +  \sqrt{5} }{4}  + (3 -  \sqrt{5} ) + 2 \\  \\  =  \frac{3 +  \sqrt{5} + 4(3 -  \sqrt{5}) + 8  }{4}  \\  \\  =  \frac{3 +  \sqrt{5}  + 12 - 4 \sqrt{5} + 8 }{4}  \\  \\  =  \frac{23 - 3 \sqrt{5} }{4}  \\  \\  =  \frac{46 - 6 \sqrt{5} }{8}  \\  \\  =  \frac{45 + 1 - 6 \sqrt{5} }{8}  \\

\implies \frac{(3 \sqrt{5 - 1}) {}^{2}  }{(2 \sqrt{2})  {}^{2} }   = ( \frac{3 \sqrt{5 - 1} }{2 - \sqrt{2} } ) {}^{2}  \\  \\ \implies( \sqrt{x +  \frac{1}{ \sqrt{x} } } ) {}^{2}  = ( \frac{3 \sqrt{5} - 1 }{2 \sqrt{2} } ) {}^{2} \\  \\ \implies \sqrt{x}   +  \frac{1}{√x}  =  \frac{3 \sqrt{5} - 1 }{2 \sqrt{2} }

Therefore, option (2) is correct.

Attachments:
Answered by mani978
3

Answer:

please follo me and thank

I started following u

Similar questions