Math, asked by ajjubhai94official9, 3 months ago

Can anyone do this ???
EXPLANATION Required​

Attachments:

Answers

Answered by goswamigaming1m
0

Answer:

Step-by-step explanation:

Answer is 4 correct

Answered by pritirai1787
27

Answer:

Sinθ=

Hypotenuse

Perpendicular

=

13

5

Sinθ=

Base

Perpendicular

=

12

5

Secθ=

Base

Hypotenuse

=

12

13

Step-by-step explanation:

Given : tan\theta +sec\theta = 1.5tanθ+secθ=1.5

To Find : sin theta, tan theta ,sec theta .

Solution :

tan\theta +sec\theta = 1.5tanθ+secθ=1.5

tan\theta +\sqrt{1+Tan^2 \theta} = 1.5tanθ+

1+Tan

2

θ

=1.5

\sqrt{1+Tan^2 \theta} = 1.5-tan \theta

1+Tan

2

θ

=1.5−tanθ

1+Tan^2 \theta= (1.5-tan \theta)^21+Tan

2

θ=(1.5−tanθ)

2

1+Tan^2 \theta=\frac{9}{4}+Tan^2\theta - 3 tan \theta1+Tan

2

θ=

4

9

+Tan

2

θ−3tanθ

1-\frac{9}{4}= - 3 tan \theta1−

4

9

=−3tanθ

-\frac{5}{4}= - 3 tan \theta−

4

5

=−3tanθ

\frac{5}{4}= 3 tan \theta

4

5

=3tanθ

\frac{5}{12}= tan \theta

12

5

=tanθ

Tan \theta = \frac{Perpendicular}{Base}Tanθ=

Base

Perpendicular

On comparing Perpendicular = 5

Base = 12

Hypotenuse^2=Perpendicular^2+base^2Hypotenuse

2

=Perpendicular

2

+base

2

Hypotenuse^2=5^2+12^2Hypotenuse

2

=5

2

+12

2

Hypotenuse=\sqrt{5^2+12^2}Hypotenuse=

5

2

+12

2

Hypotenuse=13Hypotenuse=13

\begin{gathered}Sin \theta = \frac{Perpendicular}{Hypotenuse}=\frac{5}{13}\\Sin \theta = \frac{Perpendicular}{Base}=\frac{5}{12}\\Sec \theta = \frac{Hypotenuse}{Base}=\frac{13}{12}\end{gathered}

Sinθ=

Hypotenuse

Perpendicular

=

13

5

Sinθ=

Base

Perpendicular

=

12

5

Secθ=

Base

Hypotenuse

=

12

13

Attachments:
Similar questions