Can anyone do this ???
EXPLANATION Required
Answers
Answer:
Step-by-step explanation:
Answer is 4 correct
Answer:
Sinθ=
Hypotenuse
Perpendicular
=
13
5
Sinθ=
Base
Perpendicular
=
12
5
Secθ=
Base
Hypotenuse
=
12
13
Step-by-step explanation:
Given : tan\theta +sec\theta = 1.5tanθ+secθ=1.5
To Find : sin theta, tan theta ,sec theta .
Solution :
tan\theta +sec\theta = 1.5tanθ+secθ=1.5
tan\theta +\sqrt{1+Tan^2 \theta} = 1.5tanθ+
1+Tan
2
θ
=1.5
\sqrt{1+Tan^2 \theta} = 1.5-tan \theta
1+Tan
2
θ
=1.5−tanθ
1+Tan^2 \theta= (1.5-tan \theta)^21+Tan
2
θ=(1.5−tanθ)
2
1+Tan^2 \theta=\frac{9}{4}+Tan^2\theta - 3 tan \theta1+Tan
2
θ=
4
9
+Tan
2
θ−3tanθ
1-\frac{9}{4}= - 3 tan \theta1−
4
9
=−3tanθ
-\frac{5}{4}= - 3 tan \theta−
4
5
=−3tanθ
\frac{5}{4}= 3 tan \theta
4
5
=3tanθ
\frac{5}{12}= tan \theta
12
5
=tanθ
Tan \theta = \frac{Perpendicular}{Base}Tanθ=
Base
Perpendicular
On comparing Perpendicular = 5
Base = 12
Hypotenuse^2=Perpendicular^2+base^2Hypotenuse
2
=Perpendicular
2
+base
2
Hypotenuse^2=5^2+12^2Hypotenuse
2
=5
2
+12
2
Hypotenuse=\sqrt{5^2+12^2}Hypotenuse=
5
2
+12
2
Hypotenuse=13Hypotenuse=13
\begin{gathered}Sin \theta = \frac{Perpendicular}{Hypotenuse}=\frac{5}{13}\\Sin \theta = \frac{Perpendicular}{Base}=\frac{5}{12}\\Sec \theta = \frac{Hypotenuse}{Base}=\frac{13}{12}\end{gathered}
Sinθ=
Hypotenuse
Perpendicular
=
13
5
Sinθ=
Base
Perpendicular
=
12
5
Secθ=
Base
Hypotenuse
=
12
13