Can Anyone explain Me Composite Function???
Answers
Step-by-step explanation:
mathematics, function composition is an operation that takes two functions f and g and produces a function h such that h(x) = g. In this operation, the function g is applied to the result of applying the function f to x. Wikipedia
Answer:
In mathematics, function composition is an operation that takes two functions f and g and produces a function h such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : X → Y and g : Y → Z are composed to yield a function that maps x in X to g(f(x)) in Z.
Intuitively, if z is a function of y, and y is a function of x, then z is a function of x. The resulting composite function is denoted g ∘ f : X → Z, defined by (g ∘ f )(x) = g(f(x)) for all x in X.[note 1] The notation g ∘ f is read as "g circle f ", "g round f ", "g about f ", "g composed with f ", "g after f ", "g following f ", "g of f", or "g on f ". Intuitively, composing two functions is a chaining process in which the output of the inner function becomes the input of the outer function.
The composition of functions is a special case of the composition of relations, so all properties of the latter are true of composition of functions.[1] The composition of functions has some additional properties.