Math, asked by kadiarudra9574, 2 months ago

can anyone give answer​

Attachments:

Answers

Answered by 12thpáìn
89

Given

  • Radius of Three Metallic Spheres are 3 cm , 4 cm and 5 cm

To Find

  • Radius of New Shape who makes by melting those there sphare

we know that

\pink{\boxed{\bf{Volume\ of \ Sphare = \dfrac{4}{3}πr³}}} \\  \\

Valume of Sphare whose radius is 3

 \small\sf{~~~~~:\implies.Volume= \dfrac{4}{3} \times   \dfrac{22}{7}  \times  3³}

\small\sf{~~~~~:\implies Volume= \dfrac{88}{21}  \times  27}

\small\sf{~~~~~:\implies Volume= 4.2 \times27}

\small\sf{~~~~~:\implies Volume= 112.4} \\  \\

  • Valume of Sphare whose radius is 3= 112.4cm³

Valume of Sphare whose radius is 4

\small \sf{~~~~~:\implies Volume= \dfrac{4}{3} \times   \dfrac{22}{7}  \times  4³}

\small\sf{~~~~~:\implies Volume= \dfrac{88}{21}   \times  64}

\small\sf{~~~~~:\implies Volume= 4.2\times  64}

\small\sf{~~~~~:\implies Volume=268.8} \\  \\

  • Valume of Sphare whose radius is 4=268.8cm³

Valume of Sphare whose radius is 5

 \small\sf{~~~~~:\implies Volume= \dfrac{4}{3} \times   \dfrac{22}{7}  \times  5³}

\small\sf{~~~~~:\implies Volume= \dfrac{88}{21}  \times  125}

\small\sf{~~~~~:\implies Volume=4.2 \times  125}

\small\sf{~~~~~:\implies Volume=525}

  • Valume of Sphare whose radius is 5=525cm³

  • Now it is Given that All 3 Sphare are mealted and convert into a new Sphare

Volume of new sphare = 112.4+268.8+225

Volume of new sphare = 906.8

Radius of New Sphare = ?

\boxed{\bf{Volume\ of  \: new   \: Sphare = \dfrac{4}{3}πr³}} \\  \\

 \sf{~~~~~:\implies 906.8 = \dfrac{4}{3}  \times \dfrac{  22}{7} \times  r³}

\sf{ ~~~~~:\implies  r³ =  \dfrac{906.8 \times 21}{88} }

\sf{ ~~~~~:\implies r³ =  \dfrac{19030.2}{88} }

\sf{~~~~~:\implies   r³ =  216 }

\sf{ ~~~~~:\implies  r =  \sqrt[3]{216}  }

\sf{~~~~~:\implies   r =  \sqrt[3]{6 \times 6 \times 6}  }

\sf{ ~~~~~:\implies  r =  \sqrt[3]{ {6}^{3}}   }

\sf{ ~~~~~:\implies r =  6   }

Hance The radius of New Sphare= 6cm.

  • Options C is Correct.

Learn More:

\small{\begin{gathered}\begin{gathered}\small\begin{gathered}\bigstar \: \underline{\mathfrak{More \: Useful \: Formula} } \: \bigstar  \\ \begin{gathered}{\boxed{\begin{array} {cccc}{\sf{{\leadsto TSA \: of \: cube \: = \: 6(side)^{2}}}} \\  \\ {\sf{{\leadsto LSA \: of \: cube \:= \: 4(side)^{2}}}}  \\  \\{\sf{{\leadsto Volume \: of \: cube \: = \: (side)^{3}}}} \\  \\ {\sf{{\leadsto Diagonal \: of \: cube \: = \: \sqrt(l^{2} + b^{2} + h^{2})}}} \\  \\ {\sf{{\leadsto Perimeter \: of \: cube \: = \: 4(l+b+h)}}} \\   \\ {\sf{{\leadsto CSA \: of \: sphere \: = \: 2 \pi r^{2}}}} \\  \\ {\sf{{\leadsto SA \: of \: sphere \: = \: 4 \pi r^{2}}}} \\  \\{\sf{{\leadsto TSA \: of \: sphere \: = \: 3 \pi r^{2}}}} \\  \\ {\sf{{\leadsto Diameter \: of \: circle \: = \: 2r}}} \\  \\ {\sf{{\leadsto Radius \: of \: circle \: = \: \dfrac{d}{2}}}} \\  \\ {\sf{{\leadsto Volume \: of \: sphere \: = \: \dfrac{4}{3} \pi r^{3}}}} \\  \\ {\sf{{\leadsto Area \: of \: rectangle \: = \: Length \times Breadth}}} \\  \\ {\sf{{\leadsto Perimeter \: of \: rectangle \: = \:2(length+breadth)}}} \\  \\{\sf{{\leadsto Perimeter \: of \: square \: = \: 4 \times sides}}}\end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}

Similar questions