Math, asked by mohanasrijap, 9 months ago

Can anyone give answer and explanation of this question

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

Given:

2a^{2} + 9 {b}^{2} + 4 {c}^{2} - 4a - 6b + 4ac =  - 5

To find:

a^{2}  -  {b}^{2}  +  {c}^{2}

Solution:

2a^{2} + 9 {b}^{2} + 4 {c}^{2} - 4a - 6b + 4ac =  - 5

 {a}^{2}  + 4 {c}^{2}  + 4ac +  {a}^{2}  + 9 {b}^{2}  - 4a - 6b =  - 5

(a + 2c)^{2} +(  {a}^{2}  - 4a  + 4 - 4) + (9 {b}^{2}  - 6b + 1 - 1) =  - 5

 {(a + 2c)}^{2} + ( {a}^{2} - 4a + 4) + (9 {b}^{2}   - 6b + 1)  - 4- 1 =  - 5

 {(a + 2c)}^{2}  +  {(a - 2)}^{2} +  {(3b - 1)}^{2} =  - 5 + 5

 {(a + 2c)}^{2}  +  {(a - 2)}^{2} +  {(3b - 1)}^{2} = 0

We know that, if som of three positive quantities is 0, then the individual quantity kust be equal to 0.

So,

 (a + 2c) = 0 \:  \: and \:  \: (a - 2) = 0 \:  \: and \:  \: (3b - 1) = 0

On solving these equations, we get,

a = 2 \:  \: and \:  \: b =  \frac{1}{3} \:  \: and \:  \: c =  - 1

Now,

 {a}^{2}  -  {b}^{2}  +  {c}^{2} =  {(2)}^{2}    -   { (\frac{1}{3}) }^{2}  +  {( - 1)}^{2}

 = 4  -  \frac{1}{9} + 1

 =  \frac{44}{9}

Hope this will help you....!

Similar questions