can anyone help me in this question
Answers
Answer:
Plz mark me as brainliest
Step-by-step explanation:
2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)+1
= 2{(sin²θ)³+(cos²θ)³}-3{(sin²θ)²+(cos²θ)²}+1
= 2{(sin²θ+cos²θ)³-3sin²θcos²θ(sin²θ+cos²θ)}-3{(sin²θ+cos²θ)²-2sin²θcos²θ}+1
= 2(1-3sin²θcos²θ)-3(1-2sin²θcos²θ)+1
= 2-6sin²θcos²θ-3+6sin²θcos²θ+1
= -1+1
=0 (Proved)
Answer:
Here you go ( I hope its correct )
Step-by-step explanation:
2( sin⁶θ + cos⁶θ ) - 3( sin⁴θ + cos⁴θ ) + 1 = 0
Solving LHS :
2[ (sin²θ)³ + (cos²θ)³ + 3(sin²θ)(cos²θ)(sin²θ + cos²θ) - 3(sin²θ)(cos²θ)(sin²θ + cos²θ) ] - 3[ (sin²θ)² + (cos²θ)² + 2(sin²θ)(cos²θ) - 2(sin²θ)(cos²θ) ] - 1 = 0
{ Since
0 = 3(sin²θ)(cos²θ)(sin²θ + cos²θ) - 3(sin²θ)(cos²θ)(sin²θ + cos²θ) ,
0 = 2(sin²θ)(cos²θ) - 2(sin²θ)(cos²θ) }
⇒2[ (sin²θ + cos²θ)³ - 3(sin²θ)(cos²θ)(sin²θ + cos²θ) ] - 3 [ (sin²θ + cos²θ)² - 2(sin²θ)(cos²θ) ] - 1
{ Since
( sin²θ + cos²θ)³ = (sin²θ)³ + (cos²θ)³ + 3(sin²θ)(cos²θ)(sin²θ + cos²θ),
( sin²θ + cos²θ )² = (sin²θ)² + (cos²θ)² + 2(sin²θ)(cos²θ) }
⇒2 [ (1)³ - 3(sin²θ)(cos²θ)(1) ] - 3[ (1)² - 2(sin²θ)(cos²θ) ] - 1
{Since sin²θ + cos²θ = 1}
⇒2[ 1 - 3(sin²θ)(cos²θ) ] - 3 [ 1 - 2(sin²θ)(cos²θ) ] - 1
⇒2 - 6(sin²θ)(cos²θ) - 3 + 6(sin²θ)(cos²θ) - 1
⇒-1 + 1
= 0
= RHS
HENCE PROVED
HOPE IT HELPS
(Note : This was very difficult to write so i have tried to space it out but editing i perfectly is almost impossible so there might be some mistakes, although I have done my best)