Math, asked by ritagupta57, 2 months ago

can anyone help me in this question​

Attachments:

Answers

Answered by AAYANISRAIL
1

Answer:

a = 2² = -4

b = 2 / 5 ²= 4 / 25

c = 1 / 6 ⁴ = 1 / 1296

give me your copy

I will solve there also

good bye

Answered by Mbappe007
0

Answer:

\large \bf \clubs \: To \: Find :-♣ ToFind:−

\small\bf\dfrac{sinA}{1 + cotA} - \dfrac{cosA}{1 + tanA} =sinA - {cosA}

1+cotA

sinA

1+tanA

cosA

=sinA−cosA

-----------------------

\large \bf \clubs \: Formulae \: Used :-♣ FormulaeUsed:−

-----------------------

\begin{gathered}\bf\maltese\:\:\: tanA=\dfrac{sinA}{cosA} \\ \\ \bf\maltese\:\:\:cotA=\dfrac{cosA}{sinA} \\ \\\bf\maltese\:\:\:a^{2} -b^{2} =(a-b) (a+b)\end{gathered}

✠tanA=

cosA

sinA

✠cotA=

sinA

cosA

✠a

2

−b

2

=(a−b)(a+b)

-----------------------

\large \bf \clubs \: Proof :-♣ Proof:−

\LARGE\bf{LHS} : -LHS:−

\begin{gathered}\sf\dfrac{sinA}{1 + cotA} - \dfrac{cosA}{1 + tanA} \\ \\ \sf=\dfrac{sinA}{1 + \dfrac{cosA}{sinA} } - \dfrac{cosA}{1 + \dfrac{sinA}{cosA} }\\ \\\sf=\dfrac{sin^2A}{sinA + cosA} - \dfrac{cos^{2}A }{cosA + sinA} \\ \\ \sf=\dfrac{sin^2A-cos^2A}{sinA + cosA} \\ \\ \sf = \frac{ \cancel{(sinA + cosA)}(sinA - cosA)}{ \cancel{sinA + cosA}} \\ \\ \bf= sinA + cosA\end{gathered}

1+cotA

sinA

1+tanA

cosA

=

1+

sinA

cosA

sinA

1+

cosA

sinA

cosA

=

sinA+cosA

sin

2

A

cosA+sinA

cos

2

A

=

sinA+cosA

sin

2

A−cos

2

A

=

sinA+cosA

(sinA+cosA)

(sinA−cosA)

=sinA+cosA

\LARGE=\bf{RHS}=RHS

\Large \purple{ \bf\bigstar \: Hence \: Proved \: \bigstar}★HenceProved★

-----------------------

\large \bf \clubs \: Additional \: Info :-♣ AdditionalInfo:−

\begin{gathered}\qquad \pink{\bigstar \: \bf Fundamental \: Trigonometric\:\bigstar} \\ \qquad\bf\pink{\bigstar\:Identities\:\bigstar}\end{gathered}

★FundamentalTrigonometric★

★Identities★

\begin{gathered}\large\qquad \boxed{\boxed{\begin{array}{cc} \maltese \: \sf \: { \sin }^{2} \theta + { \cos}^{2} \theta = 1 \\ \\ \maltese\sf \: \: { \sec}^{2} \theta = 1 + { \tan}^{2} \theta \\ \\ \maltese \: \sf \: { \cosec}^{2} \theta = 1 + { \cot}^{2} \theta \end{array}}}\end{gathered}

✠sin

2

θ+cos

2

θ=1

✠sec

2

θ=1+tan

2

θ

✠cosec

2

θ=1+cot

2

θ

-----------------------

Similar questions