Math, asked by glaxy20000, 11 months ago

can anyone help me <br />express \: with \: rational \: denominator \\  \frac{1}{( \sqrt{2  \:  -  \sqrt{3) +  \sqrt{4} } } } <br />​

Answers

Answered by LovelyG
5

Answer:

 \frac{1}{ \sqrt{2} -  \sqrt{3} +  \sqrt{4} }  \\  \\ \frac{1}{ (\sqrt{2}  -  \sqrt{3})  + 2 }  \times  \frac{( \sqrt{2} -  \sqrt{3}) - 2 }{( \sqrt{2} -  \sqrt{3}) -  2}  \\  \\  \frac{ \sqrt{2} -  \sqrt{3}  - 2}{( \sqrt{2} -  \sqrt{3})^{2} - (2)^{2} }  \\  \\ \frac{ \sqrt{2}  -  \sqrt{3}   - 2 }{2 + 3 - 2 \sqrt{6} - 4 }  \\  \\  \frac{ \sqrt{2} -  \sqrt{3}  - 2 }{1 - 2 \sqrt{6} }

Still the denominator is not rationalised, we will rationalise again :

\frac{ \sqrt{2} -  \sqrt{3} -  2 }{1 - 2 \sqrt{6} }  \\  \\\frac{ \sqrt{2} -  \sqrt{3} -  2}{1 - 2 \sqrt{6} } \times  \frac{1 + 2 \sqrt{6} }{1 + 2 \sqrt{6} }  \\  \\  \frac{(1 + 2 \sqrt{6})( \sqrt{2} -  \sqrt{3} - 2)}{(1) {}^{2} - (2 \sqrt{6}) {}^{2} }  \\  \\  \frac{ \sqrt{2}  -  \sqrt{3} -  2 + 4\sqrt{3}  -6 \sqrt{2}  - 4 \sqrt{6} }{1 - 24}  \\  \\  \frac{-5 \sqrt{2}  + 3 \sqrt{3}  - 2- 4 \sqrt{6} }{-23}\\ \\ \frac{-(5 \sqrt{2}  - 3 \sqrt{3}  + 4 \sqrt{6}+2 }{-23} \\ \\ \frac{5 \sqrt{2}- 3 \sqrt{3} + 4 \sqrt{6} +2}{23}


glaxy20000: Thanks, thanks, thanks for the answer
LovelyG: Welcome :)
LovelyG: Wait there is some error, let me correct it
LovelyG: Corrected!
Similar questions