Math, asked by s2m6, 4 months ago

Can anyone help me out with this question​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \lim_{x \rarr0} \frac{ {27}^{x}  -  {9}^{x} -  {3}^{x}  + 1 } { \sqrt{2}  -  \sqrt{1 +  \cos(x) } }  \\

This is in  \frac{0}{0} \\ form, so using l'hospital rule

 \lim_{x \rarr0} \frac{ {27}^{x}. ln(27)  -  {9}^{x} . ln(9) -  {3}^{x} . ln(3)   }{   \frac{ \sin(x) }{2 \sqrt{1 +  \cos(x) } } }  \\

  = \lim_{x \rarr0} \frac{2( {27}^{x}. ln(27)  -  {9}^{x} . ln(9) -  {3}^{x} . ln(3)  ) }{   \sqrt{1 -  \cos(x) } }  \\

  = \lim_{x \rarr0} 2( {27}^{x}. ln(27)  -  {9}^{x} . ln(9) -  {3}^{x} . ln(3)  ) . \lim_{x \rarr0} \frac{ \sqrt{1 +  \cos(x) } }{ \sin(x) }  \\

  =  2( ln(27)  - ln(9) - ln(3)  ) . \lim_{x \rarr0} \frac{ \sqrt{1 +  \cos(x) } }{ \sin(x) }  \\

 = 0

Answered by 1157684
1

Answer:

hi thanks for following me

may i have your intro pls my name is riya

Similar questions