Math, asked by ushachandrawanshi077, 8 months ago

can anyone help me solving the equation....within 5 min ...​

Attachments:

Answers

Answered by Anonymous
3

\fbox{Solution\:of\:17}

 \frac{1}{x + 6}  +  \frac{1}{x - 10}  =  \frac{3}{x - 4}  \\  =  >  \frac{1 + 1}{x + 6 + x - 10}  =  \frac{3}{x - 4}  \\  =  >  \frac{2}{2x - 4}  =  \frac{3}{x - 4}  \\  =  > 2(x - 4) = 3(2x - 4) \\  =  > 2x - 8 = 6x - 12 \\  =  > 2x - 6x =  - 12 + 8 \\  =  >  - 4x =  - 4 \\  =  > x =  \frac{ - 4}{ - 4}  \\  =  > x = 1

\fbox{Solution\:of\:18}

 \sqrt{3x + 4}  = x \\  =  >  \frac{1}{2} (3x + 4) = x \\  =  > 3x \times  \frac{1}{2}  + 4 \times  \frac{1}{2}  = x \\  =  >  \frac{3x}{2}  + 2 = x \\  =  >  \frac{3x + 4}{2}  = x \\  =  > 3x + 4 = 2x \\  =  > 4 = 2x - 3x \\  =  >  - x = 4 \\  =  > x =  - 4

Answered by Anonymous
21

Answer:

<body bgcolor="r"><font color="cyan">

\huge{\red{\bf{\mathfrak{Answer-:}}}}

\huge{\bold{❤}}

\huge{\blue{\bf{\mathfrak{solution\:1-:}}}}

 \frac{1}{x + 6 }  +  \frac{1}{x - 10}  =  \frac{3}{x - 4}  \\  \\  \frac{x - 10 + x + 6}{(x - 10)(x + 6)}  =  \frac{3}{x - 4} \\  \\  \frac{2x - 4}{ {x}^{2} + 6x - 10x - 60 }  =  \frac{3}{x - 4}    \\  \\  \frac{2x - 4}{ {x}^{2} - 4x - 60 }  =  \frac{3}{x - 4}  \\  \\ (2x - 4)(x - 4) = 3 {x}^{2}  - 12x  \\ - 180 \\  \\ 2 {x}^{2} - 8x - 4x  + 16 = 3 {x}^{2} -  \\ 12x - 180  \\  \\  3 {x}^{2} -  12x - 180 -2 {x}^{2}  +  8x   \\ +  4x   -  16   \\  \\  {x}^{2}  - 196 = 0\\  \\

\huge{\blue{\bf{\mathfrak{solution\:2-:}}}}

\sqrt{3x + 4}  = x \\  \\ squaring \: both \: side \\  \\ 3x + 4 =  {x}^{2}  \\  \\  {x}^{2}  - 3x  - 4 = 0

Similar questions