Math, asked by nishitmgame, 1 month ago

can anyone help me to get this ans. :)​

Attachments:

Answers

Answered by cutelight82
2

༒࿐៚ Answer ༒࿐៚

1. AQC

2. APB

3. cpct

Hope it is Correct

Answered by sia1234567
15

 \bf \huge{Question}

 \rm \: {In \: the \: adjoining \: figure  - }

 \bf BP \perp \: AC , CQ \perp \: AB \:  then \: prove \: that

 \rm \triangle \: APB  \: and   \: \triangle  \: AQC \:  are  \: similar

 \bf{ Solution : }

 \rm In \: \triangle \: APB \: and \triangle \: AQC

 \rm \angle \: APB \: = \fbox{90} \degree

 \rm \angle \: AQC =  \fbox{90} \degree

 \rm  \therefore  \: \angle\: APB \cong \: \angle \:  AQC ....  \: from  \: (I)  \: and \:  (II) </p><p>

 \rm \angle  \: PAB \cong \angle \: QAC \:  \underline{ \fbox{common \: angle}}

 \rm\triangle \: APB \: \cong \triangle AQC \: ... \:AA \:  test

_____________________________

   \qquad\qquad\underline{ \underline{ \blacksquare \pmb { \sf \:  \red{know \: more : }}}}

➤ The AA Similarity Theorem states:

If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

___________

➽ SSS

• ( Side - Side - Side )

➽ SAS

• ( Side - Angle - Side )

➽ ASA

• ( Angle - Side - Angle )

➽ AAS

• ( Angle - Angle - Side )

Similar questions