Math, asked by zishan174, 1 year ago

can anyone here teach me trigonometry plzzzzz
I had a exam tomorrow plzz


jacobcunningham202: if u want to learn about trigonometry then goto :
jacobcunningham202: https://betterexplained.com/articles/intuitive-trigonometry/
jacobcunningham202: this tells you everything you need to know about it
jacobcunningham202: byeee
jacobcunningham202: just read it carefuly take notes and you will be fine

Answers

Answered by jacobcunningham202
0

Sure, if you’re a math robot, an equation is enough. The rest of us, with organic brains half-dedicated to vision processing, seem to enjoy imagery. And “TOA” evokes the stunning beauty of an abstract ratio.

I think you deserve better, and here’s what made trig click for me.

  Visualize a dome, a wall, and a ceiling  Trig functions are percentages to the three shapes

Motivation: Trig Is Anatomy

Imagine Bob The Alien visits Earth to study our species.

Without new words, humans are hard to describe: “There’s a sphere at the top, which gets scratched occasionally” or “Two elongated cylinders appear to provide locomotion”.

After creating specific terms for anatomy, Bob might jot down typical body proportions:

   The armspan (fingertip to fingertip) is approximately the height

   A head is 5 eye-widths wide

   Adults are 8 head-heights tall

body proportions trig analogy

How is this helpful?

Well, when Bob finds a jacket, he can pick it up, stretch out the arms, and estimate the owner’s height. And head size. And eye width. One fact is linked to a variety of conclusions.

Even better, human biology explains human thinking. Tables have legs, organizations have heads, crime bosses have muscle. Our biology offers ready-made analogies that appear in man-made creations.

Now the plot twist: you are Bob the alien, studying creatures in math-land!

Generic words like “triangle” aren’t overly useful. But labeling sine, cosine, and hypotenuse helps us notice deeper connections. And scholars might study haversine, exsecant and gamsin, like biologists who find a link between your tibia and clavicle.

And because triangles show up in circles…

circular path

…and circles appear in cycles, our triangle terminology helps describe repeating patterns!

Trig is the anatomy book for “math-made” objects. If we can find a metaphorical triangle, we’ll get an armada of conclusions for free.

Sine/Cosine: The Dome

Instead of staring at triangles by themselves, like a caveman frozen in ice, imagine them in a scenario, hunting that mammoth.

Pretend you’re in the middle of your dome, about to hang up a movie screen. You point to some angle “x”, and that’s where the screen will hang.

Trig dome analogy

The angle you point at determines:

   sine(x) = sin(x) = height of the screen, hanging like a sign

   cosine(x) = cos(x) = distance to the screen along the ground [“cos” ~ how “close”]

   the hypotenuse, the distance to the top of the screen, is always the same

Want the biggest screen possible? Point straight up. It’s at the center, on top of your head, but it’s big dagnabbit.

Want the screen the furthest away? Sure. Point straight across, 0 degrees. The screen has “0 height” at this position, and it’s far away, like you asked.

The height and distance move in opposite directions: bring the screen closer, and it gets taller.

Tip: Trig Values Are Percentages

Nobody ever told me in my years of schooling: sine and cosine are percentages. They vary from +100% to 0 to -100%, or max positive to nothing to max negative.

Let’s say I paid $14 in tax. You have no idea if that’s expensive. But if I say I paid 95% in tax, you know I’m getting ripped off.

An absolute height isn’t helpful, but if your sine value is .95, I know you’re almost at the top of your dome. Pretty soon you’ll hit the max, then start coming down again.

How do we compute the percentage? Simple: divide the current value by the maximum possible (the radius of the dome, aka the hypotenuse).

That’s why we’re told “Sine = Opposite / Hypotenuse”. It’s to get a percentage! A better wording is “Sine is your height, as a percentage of the hypotenuse”. (Sine becomes negative if your angle points “underground”. Cosine becomes negative when your angle points backwards.)

Let’s simplify the calculation by assuming we’re on the unit circle (radius 1). Now we can skip the division by 1 and just say sine = height.

Every circle is really the unit circle, scaled up or down to a different size. So work out the connections on the unit circle and apply the results to your particular scenario.

Try it out: plug in an angle and see what percent of the height and width it reaches:

The growth pattern of sine isn’t an even line. The first 45 degrees cover 70% of the height, and the final 10 degrees (from 80 to 90) only cover 2%.

This should make sense: at 0 degrees, you’re moving nearly vertical, but as you get to the top of the dome, your height changes level off.

Tangent/Secant: The Wall

One day your neighbor puts up a wall right next to your dome. Ack, your view! Your resale value!

But can we make the best of a bad situation?

trig wall analogy




jacobcunningham202: Generic words like “triangle” aren’t overly useful. But labeling sine, cosine, and hypotenuse helps us notice deeper connections. And scholars might study haversine, exsecant and gamsin, like biologists who find a link between your tibia and clavicle.

And because triangles show up in circles…
jacobcunningham202: …and circles appear in cycles, our triangle terminology helps describe repeating patterns!

Trig is the anatomy book for “math-made” objects. If we can find a metaphorical triangle, we’ll get an armada of conclusions for free.
zishan174: get out
jacobcunningham202: ??
jacobcunningham202: get out why?
zishan174: I am not getting anything u are saying
jacobcunningham202: Sine/Cosine: The Dome

Instead of staring at triangles by themselves, like a caveman frozen in ice, imagine them in a scenario, hunting that mammoth.

Pretend you’re in the middle of your dome, about to hang up a movie screen. You point to some angle “x”, and that’s where the screen will hang.
jacobcunningham202: The angle you point at determines:

sine(x) = sin(x) = height of the screen, hanging like a sign
cosine(x) = cos(x) = distance to the screen along the ground [“cos” ~ how “close”]
the hypotenuse, the distance to the top of the screen, is always the same
jacobcunningham202: Want the biggest screen possible? Point straight up. It’s at the center, on top of your head, but it’s big dagnabbit.

Want the screen the furthest away? Sure. Point straight across, 0 degrees. The screen has “0 height” at this position, and it’s far away, like you asked.

The height and distance move in opposite directions: bring the screen closer, and it gets taller.
Similar questions