Math, asked by EvelynAdair, 4 months ago

can anyone kindly answer ascending and descending order of fraction...that is given above I will be grateful...

please please all... help!!!
it's homework ​

Attachments:

Answers

Answered by nightread
2

Answer:

(9) Ascending Order

(a) LCM of denominators = 36

\frac{2}{3} × \frac{12}{12} = \frac{24}{36}

\frac{5}{6} × \frac{6}{6} = \frac{30}{36}

\frac{8}{9} × \frac{4}{4} =\frac{32}{36}

\frac{11}{12} × \frac{3}{3} = \frac{33}{36}

\frac{17}{18} × \frac{2}{2} = \frac{34}{36}

\frac{24}{36} <\frac{30}{36} <\frac{32}{36} <\frac{33}{36} <\frac{34}{36}

Hence, ascending order is \frac{2}{3} < \frac{5}{6} < \frac{8}{9} < \frac{11}{12} < \frac{17}{18}

(b) LCM of denominators = 24

\frac{1}{4} × \frac{6}{6}= \frac{6}{24}

\frac{5}{6} × \frac{4}{4} = \frac{20}{24}

\frac{5}{8} × \frac{3}{3} = \frac{15}{24}

\frac{7}{12} × \frac{2}{2} =\frac{14}{24}

\frac{1}{2} × \frac{12}{12} =\frac{12}{24}

\frac{6}{24} &lt; \frac{12}{24} &lt;\frac{14}{24} &lt;\frac{15}{24} &lt;\frac{20}{24}

Hence ascending order is \frac{1}{4} &lt; \frac{1}{2} &lt; \frac{7}{12} &lt;\frac{5}{8} &lt;\frac{5}{6}

(10) Descending Order.

(a) LCM of denominators = 40

\frac{3}{5} × \frac{8}{8} = \frac{24}{40}

\frac{7}{10} × \frac{4}{4} =\frac{28}{40}

\frac{13}{20} × \frac{2}{2} = \frac{26}{40}

\frac{11}{40} × \frac{1}{1} = \frac{11}{40}

\frac{28}{40} &gt;\frac{26}{40} &gt;\frac{24}{40} &gt;\frac{11}{40}

Hence descending order is \frac{7}{10} > \frac{13}{20} > \frac{3}{5} > \frac{11}{40}

(b) LCM of denominators = 63

\frac{4}{9} × \frac{7}{7} = \frac{28}{63}

\frac{1}{21} × \frac{3}{3} = \frac{3}{63}

\frac{5}{7} × \frac{9}{9} = \frac{45}{63}

\frac{11}{63} × \frac{1}{1}=\frac{11}{63}

\frac{45}{63} &gt; \frac{28}{63} &gt;\frac{11}{63} &gt;\frac{3}{63}

The descending order is \frac{5}{7} > \frac{4}{9} > \frac{11}{63} > \frac{1}{21}

Hope it helps

Similar questions