Math, asked by hitanshrishah, 5 months ago

Can anyone please answer this question.

Attachments:

Answers

Answered by vipashyana1
2

Answer:

 ({\frac{1 -  {tan}^{2}α }{1 +  {tan}^{2}α })}^{2}  +   { (\frac{2 \:tan \: α}{1 +  {tan}^{2}α } )}^{2} = 1

Step-by-step explanation:

3 \: sin \: α = 2 \: cos \: α \\  \frac{sin \: α}{cos \: α}  =  \frac{2}{3}  \\ tan \: α =  \frac{2}{3}  \\   ({\frac{1 -  {tan}^{2}α }{1 +  {tan}^{2}α })}^{2}  +   { (\frac{2 \:tan \: α}{1 +  {tan}^{2}α } )}^{2}  =1\\  { (\frac{1 -  \frac{4}{9} }{1 +  \frac{4}{9} } )}^{2}  +  { (\frac{2 \times  \frac{2}{3} }{1 +  \frac{4}{9} }) }^{2}  =1\\   {( \frac{ \frac{9 - 4}{9} }{ \frac{9 + 4}{9} } )}^{2}  +  { (\frac{2 \times  \frac{2}{3} }{ \frac{9 + 4}{9} } )}^{2}  =1\\   {( \frac{ \frac{5}{9} }{ \frac{13}{9} }) }^{2}  +  { (\frac{ \frac{4}{3} }{ \frac{13}{9} } )}^{2} =1 \\  { (\frac{5}{9}  \times  \frac{9}{13} )}^{2}  +  { (\frac{4}{3}  \times  \frac{9}{13} )}^{2} =1 \\    { (\frac{5}{13}) }^{2}  +  { (\frac{12}{13} )}^{2}  =1\\  \frac{25}{169}  +  \frac{144}{169} =1 \\  \frac{25 + 144}{169}  =1\\    \frac{169}{169}  \\  = 1\\LHS=RHS\\Hence proved

Similar questions